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Abstract: The problem under consideration is to find a synchronizing sequence for a logic network with memory. 
A novel method is proposed that is based on formulation of the task as the Boolean satisfiability problem solved 
with any standard SAT solver. The developed method allows creating a Boolean equation presenting the problem 
in conjunctive normal form. 
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Introduction 

Advances in manufacturing process technology leads to very complex designs. But with the increasing complexity 
of integrated circuits the problem of ensuring that no faults exist which can cause the device to malfunction is on 
the rise. The problem of testing VLSI circuits with great design complexity is the dominating validation activity in 
industry today, its cost is quickly increasing. The necessity to improve the process of testing is urgent today. 

The traditional method for testability verification is based, as a rule, on gatelevel simulation. A subset of the 
functional test patterns (sequences of input vectors) is applied to integrated circuits on the manufacturing testers. 
Those design parts that yield the expected values for the applied vectors are said to pass and are decided as 
good ones; those that do not pass, are said to be bad. 

Purely combinational logic can be modeled with two states (0 and 1). The sequential circuit having memory can 
have internal states that make sequential circuit testing more complex than that of the combinational logic. That is 
because in typical case the state of internal memory is not known at the beginning of the simulation to test. This 
assumption is also a good representation of the reality, because when a circuit is powered up, its flip-flops can be 
in any of the two possible states. In order to begin execution of any test sequence it is necessary to bring a 
sequential circuit under test to some identified state from which it is known how to proceed. So we must to 
initialize the internal memory to some identified state. And only after the initialization it is possible to activate the 
faults and to test circuit. As input sequences that solve the problem of initialization homing and synchronizing 
sequences are used. 

Test sequence (the sequence of input vectors) that brings a sequential circuit to some known state regardless of 
its initial state is the synchronizing sequence. A homing sequence is such an input sequence that the 
corresponding output sequence uniquely determines its final state regardless of its initial state. After applying a 
synchronizing sequence, the final state of the circuit is known without observing the outputs. So, every 
synchronizing sequence is also a homing sequence, but not conversely. 
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These two sequences play an important role in the testing of finite state systems and have been used in a 
number of applications such as hardware fault detection, protocol verification, learning algorithms, etc. In the past 
and existing literature the problem of homing and synchronizing sequences generation is usually considered for 
the case of finite state machines (FSM). Motivated mainly by automata theory, the problem was heavily studied 
many years ago [Kohavi, 1978], [Gill, 1962]. In most applications the underlying FSM is an automaton with 
abstract state, whose functionality is described by a transition and an output tables (or by state transition graph). 
Several approaches are used to obtain a synchronizing and homing sequences for a FSM. A survey of the main 
methods can be found in [Lee, 1996]. It should note that finding a shortest homing or synchronizing sequence 
(with minimum legth) is an NP-hard problem [Eppstein, 1990]. Further we will consider the problem of obtaining 
synchronizing sequence for sequential logic circuits. 

Recent advances in solving Boolean satisfiability problems caused a significant resurgence of the application of 
satisfiability solvers (SAT-solvers) in different electronic design automation domains. In the last years, great 
improvements were achieved in both the speed and capacity of SAT-solvers [Eén], [Mahajan, 2005], 
[Goldberg, 2002], which are now very fast and can handle huge problems. The new efficient SAT-solvers open 
new possibilities for applying this technology by translating hard design problems to equivalent SAT problems. So 
the existence of effective SAT solvers makes it attractive to translate looking-for synchronizing sequence problem 
into Boolean problem solvable by SAT solvers. SAT solvers normally operate on Boolean formulas in Conjunctive 
Normal Form (CNF), so the method is proposed that allows to create a Boolean function presenting problem of 
search for synchronizing sequence in CNF form. 

The case considered here concerns to synchronous logical circuits having flip-flop primitives of type D as memory 
elements. For such a case a method of finding synchronizing sequence is proposed, the method allows creating a 
Boolean equation presenting the problem of search for synchronizing sequence in form of CNF. 

The problem statement 

The proposed method works on a synchronous circuit that consists of combinational logic and flip-flops, and is 
often represented in the form of two blocks. The first block is purely combinational, some its outputs feed a set of 
flip-flops, which in turn control some inputs of the combinational block. So the combinational block has two types 
of inputs: external inputs known as primary inputs and internal inputs, they present the internal state of the circuit 
and are supplied by the flip-flops. Similarly, the combinational block has two types of outputs: externally 
observable and known as primary outputs, and internal outputs, they present excitation functions for flip-flops. 

The combinational block is modeled as an interconnect of primitive gates such as AND, OR, NOT, NAND, NOR, 
XOR, and in addition to them sometimes complex gates such as blocks implementing combinational circuits are 
also allowed. 

The second block consists of register of the frequently used data flip-flops – D flip-flops. The example of such a 
logic circuit is shown in Figure 1. 

The task is to be initialize memory elements to some reset states, that is, to find out the synchronizing sequence. 
Informally, a synchronizing sequence is a sequence of input sets that, when fed the sequential circuit, is 
guaranteed to bring it to some specified final state. 
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Let we have a circuit with n primary inputs and m D flip-flops. An input sequence, X = (x1, x2,…, xk) (where xi = 
(x1i, x2i, …, xni) is a vector of input signals that is fed the circuit in the time moment i) is said to be a synchronizing 
sequence of a sequential circuit, if the final circuit internal state after feeding it on the sequence can be 
determined uniquely regardless of the circuit initial state. 

In general case there exists more than one synchronizing sequence for a finite state machine. We classify a 
synchronizing sequence X for a circuit as optimal if it is the shortest for all synchronizing sequences accepted by 
the circuit, that is X is of the shortest length k. It can be not alone too. The task is to find one of the shortest 
synchronizing sequences. 
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Figure 1. The example circuit under test 

 

The behavior of the D flip-flop is described as the behavior of Moore’s automaton with two states: 0 and 1. The 
symbol at its output coincides with the symbol of the state, in which the flip-flop is at the current time instant. 
Usually, the structure of an output symbol is given as two Boolean variables: Q and Q (Figure 1). The D flip-flop 
acts as a delay, i.e. at the next instant after the excitation signal has come it comes to the state corresponding to this 
signal. The search for known D flip-flop states is reduced to search for predefined values of excitation functions of 
the flip-flops. So further we are allowed to consider only combinational block having n + m primary inputs x1, x2, …, 
xn, xn+1, xn+2, …, xn+k corresponding n primary inputs and k flip-flop outputs, and k primary outputs y1, y2, …, yk 
corresponding to flip-flop inputs defining their excitation functions. The circuit part defining primary outputs of 
ancestor sequential circuit is deleted as it is shown in Figure 2. 
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Figure 2. Combinational part of the sequential circuit shown in Figure 1 

SAT-based approach to solving the problem of synchronizing sequence search 

A CNF represents a Boolean function as conjunction of one or more clauses, each being in its turn a disjunction 
of literals (from now on literal is a Boolean variable or its inversion). A CNF denotes a unique completely specified 
Boolean function. Matrix representation of CNF formula C containing k clauses and n distinct variables is a 
ternary matrix C having a row for each clause and a column for each variable. The entry cij of the matrix in the i-th 
row and the j-th column is 1, 0 or “–” depending on in what a form (xj or xj) the variable xj appears or does not 
appear in i-th clause of C. 

CNF representation is popular among SAT algorithms because each clause must be satisfied (evaluate to 1) for 
the overall CNF to be satisfied. The SAT problem is concerned with finding a truth assignment of literals which 
simultaneously satisfies each of CNF clauses. If such an assignment exists the CNF is referred to as satisfiable, 
and the assignment is known as a satisfying assignment. 

A variable value assignment a (a set of n equalities of type ai = σi, where σi ∈ {0, 1}) for the vector x can be 
complete if all xi are assigned or partial otherwise. A complete variable value assignment represents a minterm 
and a partial assignment represents a cube that could be thought as a product of literals. 

The topological description of a combinational circuit can be represented using a directed acyclic graph, where 
nodes correspond to the mentioned gates, primary inputs and outputs; edges correspond to circuit wires 
connecting the nodes. Incoming edges of a circuit node are called its fanins and outgoing edges are called 
fanouts. A node in the circuit is multiple fan-out if its output is a fan-in to different gates. The node and its output 
signal are named the same. Let us call the functionality of a circuit node in terms of its immediate fanins as the 
local function of the node. The functionality of the circuit in terms of its primary inputs is the system of global 
functions implemented on primary outputs. 

Majority of SAT applications derived from circuit representation produce so called conventional CNF describing all 
combinations of signal values on all circuit terminals. The conventional CNF of a combinational circuit specifies all 
combinations of signal values of its terminals that can take place when it functions. 
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A circuit-to-CNF conversion uses as many variables as there are primary inputs and gates in the circuit. When the 
conventional transformation is applied to a combinational circuit, for output of each gate (except output ones) its 
own internal Boolean variable is introduced and only local functions of the gates are considered. The procedure 
of derivation of conventional CNF is known, it associates a CNF formula with each circuit gate that captures the 
consistent assignments between gate primary inputs and output. All such gate local CNFs are joined then in the 
overall circuit conventional CNF by using the conjunction operation. CNF for a gate representing a local function 
y = f (z1, z2, …, zk) is based on defining and representing in a CNF form a new Boolean function ϕ (y, f) = y ∼ 
f (z1, z2, …, zk) [Kunz, 2002] that is true in the only case when both functions y and f (z1, z2, …, zk) assume the 
same value. 

Here are the conventional CNF representations of NOT, 2EXOR, nAND, nOR functions and their inversions: 

y =z → (z ∨ y) (z ∨y); 

y = z1 ⊕ z2 → (z1 ∨ z2 ∨y) (z1 ∨z2 ∨y) (z1 ∨z2 ∨ y) (z1 ∨ z2 ∨ y); 

y = z1 ∧ z2 ∧… ∧ zn →  (z1 ∨y) (z2 ∨y) … (zn ∨y) (z1 ∨z2 ∨ … ∨zn ∨ y); 

y = z1 ∨ z2 ∨… ∨ zn → (z1 ∨ y) (z2 ∨ y) … (zn ∨ y) (z1 ∨ z2 ∨ … ∨ zn ∨y); 

y = 21 zz ⊕  → (z1 ∨ z2 ∨ y) (z1 ∨z2 ∨ y) (z1 ∨z2 ∨y) (z1 ∨ z2 ∨y); 

y = nzzz ...21  →  (z1 ∨ y) (z2 ∨ y) … (zn ∨ y) (z1 ∨z2 ∨ … ∨zn ∨y); 

y = nzzz ∨∨∨ ...21  → (z1 ∨y) (z2 ∨y) … (zn ∨y) (z1 ∨ z2 ∨ … ∨ zn ∨ y). 

It is possible to eliminate the output variable y of NOT gate and two appropriate clauses if to subsume it in its fan-
out gates replacing all instances of y with the negated input variable x of this gate. 

The obtained gate local CNFs are joined then in the overall circuit CNF by using the conjunction operation. Both 
the size of the resulting CNF and the complexity of the conventional translation procedure are linear in the gate 
number of the original combinational circuit. 

For example, four additional variables e1, e2, e3 and e4 were supplemented the circuit shown in Figure 2. The 
corresponding conventional CNF is shown at the second column in Table 1. 

Given a conventional CNF formula the SAT problem may be restated as the problem of finding a variable value 
assignment that satisfies every clause, taking into account that a clause is satisfied if at least one its literal is 
equal to 1. Recall, a CNF formula is satisfiable if and only if there is a satisfying assignment of its literals which 
simultaneously satisfies each of its member clauses. 

The method of searching for synchronizing sequence for a logic circuit via Boolean satisfiability 

Boolean SAT formulations are binary in essence. Introduced Boolean variables represent solution alternatives, 
and Boolean formulas represent constraints imposes by the solved problem. All variable assignments satisfying 
Boolean formulas are equivalent when solving the satisfiability problem. During the search for SAT solution of the 
synchronizing sequence problem there is no cost mechanisms to favor one solution over another. Thus 
formulating SAT problem of searching the shortest synchronizing sequence, we are able only to get the answer 
whether some solution (of the predefined length) of our problem exists. That is why the problem of optimal 
synchronizing sequence finding is solved regarding a priori assigned synchronizing sequence length. The 
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problem is formulated as a problem of Boolean satisfiability, deriving a Boolean function such that an assignment 
of variables that satisfy it (if it exists) defines a synchronizing sequence of the predefined size. 
Thus, we are forced to reformate continuously the folding problem with increasing values of synchronizing 
sequence length until a satisfiable problem formulation arises. Such a reformulation of the problem based on 
enumeration of sequence length values seems cumbersome for logic circuits of great size, but below it will be 
shown that the process of alternate CNF building for increasing synchronizing sequence length is iterative. 
At the beginning we search for a synchronizing sequence X1 = (x1) of the length 1 and form conventional CNF C1 
for the combinational circuit under test assuming that its primary inputs corresponding to primary inputs of 
ancestor sequential circuit are (x11, x21, …, xn1) and primary inputs correspond to flip-flop outputs of ancestor 
sequential circuit are (xn+11, xn+21, …, xn+k1). The values of the last variables are accepted to be don’t-care: xn+11 = 
“–”, xn+21 = “–”, …, xn+k1 = “–” because we don’t know their initial values. 
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 Figure 3. The process of augmentation of the number of blocks for the circuit of Figure 2 

If such a manner formed CNF C1 is satisfiable we will obtain synchronizing sequence X1 = (x11, x21, …, xn1) of unit 
length and the corresponding values of the circuit primary outputs y11, y21, …, yk1 – defining values of excitation 
functions. Otherwise we should augment the experiment length and form the conventional CNF C2 to search for a 
two cycle synchronizing sequence X2  = (x1, x2). So two block combinational circuit will be considered: the first 
block is the circuit considered on the first step and the second one is a circuit identical to the first one but having 
primary inputs (x12, x22, …, xn2) and xn+12 = y11, xn+22 = y21, …, xn+k2 = yk1. Its k primary inputs xn+12, xn+22, …, xn+k2 
are connected with primary outputs y11, y21, …, yk1 of the first block circuit, identifying the variables y11, y21, …, yk1 
and xn+12, xn+22, …, xn+k2, so we use xn+12, xn+22, …, xn+k2 instead of y11, y21, …, yk1 have been introduced earlier. 
Then we again verify whether such a formed CNF C2 is satisfiable to test whether there exists synchronizing 
sequence X2  = (x1, x2) of the length 2 and so on as long (Figure 3) as we will obtain satisfiable CNF or the 
number of iterations exceeds the limit of iterations predefined in advance. In the last case our search fails and we 
don’t find out any synchronizing sequence. 

The peculiarities of search for synchronizing sequence via Boolean satisfiability 

Here for illustration we consider the mentioned above example circuit (Figures 1 and 2) and find a synchronizing 
sequence for it. Taking in mind the proposed method we construct one-block circuit (Figure 4) and the 
conventional CNF C1 corresponding to it (the second column of Table 1). For the convenience of its future 
augmentation (in the case if CNF C1 will be unsatisfiable) we place the inner variables x41, x51 forward of the 
primary input variables x11, x21, x31. CNF C1 has 21 clauses. Before testing its satisfiability let substitute don’t-care 
values for inner variables x41, x51 because their values are unknown and we don’t entitled to assign them as 
distinct from values of primary input variables x11, x21, x31. Replacement of the values will simplify the conventional 
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CNF C1. For example, three clauses of CNF – (x11 ∨ e11) (x41 ∨ e11) (x41 ∨x11 ∨e11) for NAND gate e11 are 
replaced with (x11 ∨ e11) e11 (x11 ∨e11) or after simplification with only two simple clauses – e11 and x41. 
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Figure 4. One-block combinational circuit for searching part of the sequential circuit shown in Figure 1 

It should note that there exist some primitive gates that always have don’t-care on its outputs when they have 
don’t-care at least in one input. Gates realizing XOR and equivalency functions are such ones. For example, four 
clauses CNF for NXOR gate e21 – (x51 ∨ x21 ∨ e21) (x51 ∨x21 ∨ e21) (x51 ∨x21 ∨e11) (x51 ∨ x21 ∨e11) is 
replaced with CNF (x21 ∨ e21) (x21 ∨ e21) (x21 ∨e11) (x21 ∨e11) that is always unsatisfiable. So, we may delete 
fragments associated with such gates from CNF C1 taking the values of their output variables to be don’t-care. 
Simplified conventional CNF C1sim for our example circuit (Figure 4) is shown in the second column  of the second 
row in Table 1. The CNF is unsatisfiable, so we have no synchronizing sequence of the unit length. More 
precisely in the case in question we cannot initialize the first D flip-flop in the only cycle, while the synchronizing 
sequence of the unit length for the second D flip-flop exists. 

Table 1    
Conventional conjunctive normal forms for example combinational circuits 

 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

CNF C1 for one-block circuit 
x41 x51 x11 x21

 x31 e11 e21

 e31 e41 y11

 y21 

– – 1 – –
 1 – – –
 – – 
 e11 
1 – – – –
 1 – – –
 – – 
0 – 0 – –
 0 – – –
 – – 
– 1 – 1 –
 – 1 – –
 – – 
 e21 
– 0 – 0 –
 – 1 – –
 – – 
– 1 – 0 –
 – 0 – –

CNF C2 for two-block circuit 
x41 x51 x11 x21 x31 e11 e21

 e31 e41 x42 x52 x12 x22

 x32 e12 e22 e32 e42 y12

 y22 

– – – – – 1 –
 – – – – – –
 – – – – – –
 –  e11 
– – 0 – – – –
 – – – – – –
 – – – – – –
 – 
– – – – – 0 –
 0 – – – – –
 – – – – – –
 –  e31 
– – – – 0 – –
 0 – – – – –
 – – – – – –
 – 
– – – – 1 1 –
 1 – – – – –
 – – – – – –
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22 
23 
24 
25 
26 
27 
28 

 – – 
– 0 – 1 –
 – 0 – –
 – – 
– – – – –
 0 – 0 –
 – – 
 e31 
– – – – 0
 – – 0 –
 – – 
– – – – 1
 1 – 1 –
 – – 
0 – – 0 –
 – – – 1
 – – 
 e41 
1 – – 1 –
 – – – 1
 – – 
0 – – 1 –
 – – – 0
 – – 
1 – – 0 –
 – – – 0
 – – 
– – – – –
 – 1 1 –
 1 – 
 y11 
– – – – –
 – 0 0 –
 1 – 
– – – – –
 – 1 0 –
 0 – 
– – – – –
 – 0 1 –
 0 – 
– – – – 0
 – – – –
 – 0 
 y21 
– – – – –
 – – – 0
 – 0 
– – – – 1
 – – – 1
 – 1 

 – 
– – – – – – –
 – – – 0 – –
 – – – – – –
 –  y21 
– – – – 1 – –
 – – – – – –
 – – – – – –
 – 
– – – – – – –
 – – – – 1 –
 – 1 – – – –
 –  e12 
– – – – – – –
 – – 1 – – –
 – 1 – – – –
 – 
– – – – – – –
 – – 0 – 0 –
 – 0 – – – –
 – 
– – – – – – –
 – – – 1 – 1
 – – 1 – – –
 –  e22 
– – – – – – –
 – – – 0 – 0
 – – 1 – – –
 – 
– – – – – – –
 – – – 1 – 0
 – – 0 – – –
 – 
– – – – – – –
 – – – 0 – 1
 – – 0 – – –
 – 
– – – – – – –
 – – – – – –
 – 0 – 0 – –
 –  e32 
– – – – – – –
 – – – – – –
 0 – – 0 – –
 – 
– – – – – – –
 – – – – – –
 1 1 – 1 – –
 – 
– – – – – – –
 – – 0 – – 0
 – – – – 1 –
 –  e42 
– – – – – – –
 – – 1 – – 1
 – – – – 1 –
 – 
– – – – – – –
 – – 0 – – 1
 – – – – 0 –
 – 
– – – – – – –
 – – 1 – – 0
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 – – – – 0 –
 – 
– – – – – – –
 – – – – – –
 – – 1 1 – 1
 –  y12 
– – – – – – –
 – – – – – –
 – – 0 0 – 1
 – 
– – – – – – –
 – – – – – –
 – – 1 0 – 0
 – 
– – – – – – –
 – – – – – –
 – – 0 1 – 0
 – 
– – – – – – –
 – – – – – –
 0 – – – – –
 0  y22 
– – – – – – –
 – – – – – –
 – – – – 0 –
 0 
– – – – – – –
 – – – – – –
 1 – – – 1 –
 1 

 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

CNF C1sim after C1 simplification 
x41 x51 x11 x21

 x31 e11 e21

 e31 e41 y11

 y21 

– – – – –
 1 – – –
 – – 
 e11 
– – 0 – –
 – – – –
 – – 
– – – – –
 0 – 0 –
 – – 
 e31 
– – – – 0
 – – 0 –
 – – 
– – – – 1
 1 – 1 –
 – – 
– – – – –
 – – – –
 – – 
 y11 
– – – – –
 – – – –
 – 0 
 y21 
– – – – 1
 – – – –
 – – 

CNF C2sim after C2 simplification 
x41 x51 x11 x21 x31 e11 e21

 e31 e41 x42 x52 x12 x22

 x32 e12 e22 e32 e42 y12

 y22 

– – – – – 1 –
 – – – – – –
 – – – – – –
 –  e11 
– – 0 – – – –
 – – – – – –
 – – – – – –
 – 
– – – – – 0 –
 0 – – – – –
 – – – – – –
 –  e31 
– – – – 0 – –
 0 – – – – –
 – – – – – –
 – 
– – – – 1 1 –
 1 – – – – –
 – – – – – –
 – 
– – – – – – –
 – – – 0 – –
 – – – – – –
 –  y21 
– – – – 1 – –
 – – – – – –
 – – – – – –
 – 
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– – – – – – –
 – – – – – –
 – 1 – – – –
 –  e12 
– – – – – – –
 – – – – 0 –
 – – – – – –
 – 
– – – – – – –
 – – – 1 – 1
 – – 1 – – –
 –  e22 
– – – – – – –
 – – – 0 – 0
 – – 1 – – –
 – 
– – – – – – –
 – – – 1 – 0
 – – 0 – – –
 – 
– – – – – – –
 – – – 0 – 1
 – – 0 – – –
 – 
– – – – – – –
 – – – – – –
 – 0 – 0 – –
 –  e32 
– – – – – – –
 – – – – – –
 0 – – 0 – –
 – 
– – – – – – –
 – – – – – –
 1 1 – 1 – –
 – 
– – – – – – –
 – – – – – –
 – – 1 1 – 1
 –  y12 
– – – – – – –
 – – – – – –
 – – 0 0 – 1
 – 
– – – – – – –
 – – – – – –
 – – 1 0 – 0
 – 
– – – – – – –
 – – – – – –
 – – 0 1 – 0
 – 
– – – – – – –
 – – – – – –
 – – – – – –
 0  y22 
– – – – – – –
 – – – – – –
 1 – – – – –
 – 
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Further we construct two-block circuit (Figure 5). Its conventional CNF C2 (the third column of Table 1) turns out 
simple enough: CNF C1 after renumbering its variable labels (the superscripts 2 are replaced for 1) is attached to 
CNF C1sim. At that, the columns labeled y11, y21 of CNF C1sim and the columns x42, x52 of CNF C2 are merged. So 
CNF C2 has 20 columns (instead of 11 columns of CNF C1 and C1sim) and 28 rows. Instead of including the sixth 
row of CNF C1sim in CNF C2 we substitute x42 with don’t-care everywhere in C2. After that we obtain the simplified 
form of CNF C2 – CNF C2sim (the third column of Table 1). After testing CNF C2sim we discover that there exists its 
satisfying assignment: 
 

x41 x51 x11 x21 x31 e11e21e31e41x42 x52 x12 x22

 x32 e12e22e32e42y12 y22 
– – 0 – 1 1 – 0 – –
 0 0 0 1 1 1 0 – 0
 0 . 

 
That is x11 x31 e11e31x52x12x22 x32 e12 e22e32y12y22 in the form of conjunction. So we obtain the following 
synchronizing sequence of the length 2: 

X2  = ((0–1, 001). 
Thus to initialize the sequential circuit (Figure 1) we should feed it at the first cycle with input signals x1 = 0, x2 = 
0, x3 = 1 or x1 = 0, x2 = 1, x3 = 1, then at the next cycle with input signals x1 = 0, x2 = 0, x3 = 1. After that both D 
flip-flops pass into the state 0. 
 

Figure 5. Two-block combinational circuit for searching part of the sequential circuit shown in Figure 1 

Here one should draw attention that there are some peculiarities of searching for synchronizing sequence via 
Boolean satisfiability. They result from existence of don’t-care signals in tested circuit that can cause local 
fragments of conventional CNF to be unsatisfiable though the tested circuit has a synchronizing sequence. That 
is because don’t-care signal run through this circuit fragment from input to output. The characteristic example of 
such a case is some gate, such as XOR, or some subcircuit realizing such a function. To don’t miss a 
synchronizing sequence for a circuit having such fragments, when testing CNF satisfiability it should use SAT 
solvers (for instance, SAT solver PicoSAT [Biere, 2008]) that permit to give proof traces from which it is possible 
to extract a reason why the tested CNF is erroneous. In that case we can substitute the unsatisfiable fragment 
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with assigning don’t-care value to the variable corresponding to the appropriate fragment output signal, just as we 
have substituted CNF fragments concerned with XOR gate. 

Conclusion 

In this paper the problem of search for synchronizing sequence for logic circuits with memory elements is 
considered. A novel reformulation of the problem as the Boolean satisfiability problem solved with any existing 
SAT-solver was developed. The proposed method is used when testing a memory block whether D flip-flops are 
good or faulty. 
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