
International Journal "Information Technologies & Knowledge" Vol.5 / 2011

359

SEARCH ALGORITHM FOR SHORTEST SYNCHRONIZING SEQUENCES USING
BOOLEAN SATISFIABILITY

Liudmila Cheremisinova

Abstract: The problem under consideration is to find a synchronizing sequence for a logic network with memory.
A novel method is proposed that is based on formulation of the task as the Boolean satisfiability problem solved
with any standard SAT solver. The developed method allows creating a Boolean equation presenting the problem
in conjunctive normal form.

Keywords: design automation, verification, testing.

ACM Classification Keywords: B.6.2 [Logic Design]: Reliability and Testing; B.6.2 [Reliability and Testing]:
Error-checking.

Introduction

Advances in manufacturing process technology leads to very complex designs. But with the increasing complexity
of integrated circuits the problem of ensuring that no faults exist which can cause the device to malfunction is on
the rise. The problem of testing VLSI circuits with great design complexity is the dominating validation activity in
industry today, its cost is quickly increasing. The necessity to improve the process of testing is urgent today.

The traditional method for testability verification is based, as a rule, on gatelevel simulation. A subset of the
functional test patterns (sequences of input vectors) is applied to integrated circuits on the manufacturing testers.
Those design parts that yield the expected values for the applied vectors are said to pass and are decided as
good ones; those that do not pass, are said to be bad.

Purely combinational logic can be modeled with two states (0 and 1). The sequential circuit having memory can
have internal states that make sequential circuit testing more complex than that of the combinational logic. That is
because in typical case the state of internal memory is not known at the beginning of the simulation to test. This
assumption is also a good representation of the reality, because when a circuit is powered up, its flip-flops can be
in any of the two possible states. In order to begin execution of any test sequence it is necessary to bring a
sequential circuit under test to some identified state from which it is known how to proceed. So we must to
initialize the internal memory to some identified state. And only after the initialization it is possible to activate the
faults and to test circuit. As input sequences that solve the problem of initialization homing and synchronizing
sequences are used.

Test sequence (the sequence of input vectors) that brings a sequential circuit to some known state regardless of
its initial state is the synchronizing sequence. A homing sequence is such an input sequence that the
corresponding output sequence uniquely determines its final state regardless of its initial state. After applying a
synchronizing sequence, the final state of the circuit is known without observing the outputs. So, every
synchronizing sequence is also a homing sequence, but not conversely.

International Journal "Information Technologies & Knowledge" Vol.5 / 2011

360

These two sequences play an important role in the testing of finite state systems and have been used in a
number of applications such as hardware fault detection, protocol verification, learning algorithms, etc. In the past
and existing literature the problem of homing and synchronizing sequences generation is usually considered for
the case of finite state machines (FSM). Motivated mainly by automata theory, the problem was heavily studied
many years ago [Kohavi, 1978], [Gill, 1962]. In most applications the underlying FSM is an automaton with
abstract state, whose functionality is described by a transition and an output tables (or by state transition graph).
Several approaches are used to obtain a synchronizing and homing sequences for a FSM. A survey of the main
methods can be found in [Lee, 1996]. It should note that finding a shortest homing or synchronizing sequence
(with minimum legth) is an NP-hard problem [Eppstein, 1990]. Further we will consider the problem of obtaining
synchronizing sequence for sequential logic circuits.

Recent advances in solving Boolean satisfiability problems caused a significant resurgence of the application of
satisfiability solvers (SAT-solvers) in different electronic design automation domains. In the last years, great
improvements were achieved in both the speed and capacity of SAT-solvers [Eén], [Mahajan, 2005],
[Goldberg, 2002], which are now very fast and can handle huge problems. The new efficient SAT-solvers open
new possibilities for applying this technology by translating hard design problems to equivalent SAT problems. So
the existence of effective SAT solvers makes it attractive to translate looking-for synchronizing sequence problem
into Boolean problem solvable by SAT solvers. SAT solvers normally operate on Boolean formulas in Conjunctive
Normal Form (CNF), so the method is proposed that allows to create a Boolean function presenting problem of
search for synchronizing sequence in CNF form.

The case considered here concerns to synchronous logical circuits having flip-flop primitives of type D as memory
elements. For such a case a method of finding synchronizing sequence is proposed, the method allows creating a
Boolean equation presenting the problem of search for synchronizing sequence in form of CNF.

The problem statement

The proposed method works on a synchronous circuit that consists of combinational logic and flip-flops, and is
often represented in the form of two blocks. The first block is purely combinational, some its outputs feed a set of
flip-flops, which in turn control some inputs of the combinational block. So the combinational block has two types
of inputs: external inputs known as primary inputs and internal inputs, they present the internal state of the circuit
and are supplied by the flip-flops. Similarly, the combinational block has two types of outputs: externally
observable and known as primary outputs, and internal outputs, they present excitation functions for flip-flops.

The combinational block is modeled as an interconnect of primitive gates such as AND, OR, NOT, NAND, NOR,
XOR, and in addition to them sometimes complex gates such as blocks implementing combinational circuits are
also allowed.

The second block consists of register of the frequently used data flip-flops – D flip-flops. The example of such a
logic circuit is shown in Figure 1.

The task is to be initialize memory elements to some reset states, that is, to find out the synchronizing sequence.
Informally, a synchronizing sequence is a sequence of input sets that, when fed the sequential circuit, is
guaranteed to bring it to some specified final state.

International Journal "Information Technologies & Knowledge" Vol.5 / 2011

361

Let we have a circuit with n primary inputs and m D flip-flops. An input sequence, X = (x1, x2,…, xk) (where xi =
(x1i, x2i, …, xni) is a vector of input signals that is fed the circuit in the time moment i) is said to be a synchronizing
sequence of a sequential circuit, if the final circuit internal state after feeding it on the sequence can be
determined uniquely regardless of the circuit initial state.

In general case there exists more than one synchronizing sequence for a finite state machine. We classify a
synchronizing sequence X for a circuit as optimal if it is the shortest for all synchronizing sequences accepted by
the circuit, that is X is of the shortest length k. It can be not alone too. The task is to find one of the shortest
synchronizing sequences.

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

e1

e2

x1 e3

x2

x3

e4

z1
+

z1
+

z1
-

z2
-

z2
+

Figure 1. The example circuit under test

The behavior of the D flip-flop is described as the behavior of Moore’s automaton with two states: 0 and 1. The
symbol at its output coincides with the symbol of the state, in which the flip-flop is at the current time instant.
Usually, the structure of an output symbol is given as two Boolean variables: Q and Q (Figure 1). The D flip-flop
acts as a delay, i.e. at the next instant after the excitation signal has come it comes to the state corresponding to this
signal. The search for known D flip-flop states is reduced to search for predefined values of excitation functions of
the flip-flops. So further we are allowed to consider only combinational block having n + m primary inputs x1, x2, …,
xn, xn+1, xn+2, …, xn+k corresponding n primary inputs and k flip-flop outputs, and k primary outputs y1, y2, …, yk
corresponding to flip-flop inputs defining their excitation functions. The circuit part defining primary outputs of
ancestor sequential circuit is deleted as it is shown in Figure 2.

International Journal "Information Technologies & Knowledge" Vol.5 / 2011

362

e1

e2

x4 e3

x2

x3

e4

y1

y1

x5

x1

x2

x4

Figure 2. Combinational part of the sequential circuit shown in Figure 1

SAT-based approach to solving the problem of synchronizing sequence search

A CNF represents a Boolean function as conjunction of one or more clauses, each being in its turn a disjunction
of literals (from now on literal is a Boolean variable or its inversion). A CNF denotes a unique completely specified
Boolean function. Matrix representation of CNF formula C containing k clauses and n distinct variables is a
ternary matrix C having a row for each clause and a column for each variable. The entry cij of the matrix in the i-th
row and the j-th column is 1, 0 or “–” depending on in what a form (xj or xj) the variable xj appears or does not
appear in i-th clause of C.

CNF representation is popular among SAT algorithms because each clause must be satisfied (evaluate to 1) for
the overall CNF to be satisfied. The SAT problem is concerned with finding a truth assignment of literals which
simultaneously satisfies each of CNF clauses. If such an assignment exists the CNF is referred to as satisfiable,
and the assignment is known as a satisfying assignment.

A variable value assignment a (a set of n equalities of type ai = σi, where σi ∈ {0, 1}) for the vector x can be
complete if all xi are assigned or partial otherwise. A complete variable value assignment represents a minterm
and a partial assignment represents a cube that could be thought as a product of literals.

The topological description of a combinational circuit can be represented using a directed acyclic graph, where
nodes correspond to the mentioned gates, primary inputs and outputs; edges correspond to circuit wires
connecting the nodes. Incoming edges of a circuit node are called its fanins and outgoing edges are called
fanouts. A node in the circuit is multiple fan-out if its output is a fan-in to different gates. The node and its output
signal are named the same. Let us call the functionality of a circuit node in terms of its immediate fanins as the
local function of the node. The functionality of the circuit in terms of its primary inputs is the system of global
functions implemented on primary outputs.

Majority of SAT applications derived from circuit representation produce so called conventional CNF describing all
combinations of signal values on all circuit terminals. The conventional CNF of a combinational circuit specifies all
combinations of signal values of its terminals that can take place when it functions.

International Journal "Information Technologies & Knowledge" Vol.5 / 2011

363

A circuit-to-CNF conversion uses as many variables as there are primary inputs and gates in the circuit. When the
conventional transformation is applied to a combinational circuit, for output of each gate (except output ones) its
own internal Boolean variable is introduced and only local functions of the gates are considered. The procedure
of derivation of conventional CNF is known, it associates a CNF formula with each circuit gate that captures the
consistent assignments between gate primary inputs and output. All such gate local CNFs are joined then in the
overall circuit conventional CNF by using the conjunction operation. CNF for a gate representing a local function
y = f (z1, z2, …, zk) is based on defining and representing in a CNF form a new Boolean function ϕ (y, f) = y ∼
f (z1, z2, …, zk) [Kunz, 2002] that is true in the only case when both functions y and f (z1, z2, …, zk) assume the
same value.

Here are the conventional CNF representations of NOT, 2EXOR, nAND, nOR functions and their inversions:

y =z → (z ∨ y) (z ∨y);

y = z1 ⊕ z2 → (z1 ∨ z2 ∨y) (z1 ∨z2 ∨y) (z1 ∨z2 ∨ y) (z1 ∨ z2 ∨ y);

y = z1 ∧ z2 ∧… ∧ zn → (z1 ∨y) (z2 ∨y) … (zn ∨y) (z1 ∨z2 ∨ … ∨zn ∨ y);

y = z1 ∨ z2 ∨… ∨ zn → (z1 ∨ y) (z2 ∨ y) … (zn ∨ y) (z1 ∨ z2 ∨ … ∨ zn ∨y);

y = 21 zz ⊕ → (z1 ∨ z2 ∨ y) (z1 ∨z2 ∨ y) (z1 ∨z2 ∨y) (z1 ∨ z2 ∨y);

y = nzzz ...21 → (z1 ∨ y) (z2 ∨ y) … (zn ∨ y) (z1 ∨z2 ∨ … ∨zn ∨y);

y = nzzz ∨∨∨ ...21 → (z1 ∨y) (z2 ∨y) … (zn ∨y) (z1 ∨ z2 ∨ … ∨ zn ∨ y).

It is possible to eliminate the output variable y of NOT gate and two appropriate clauses if to subsume it in its fan-
out gates replacing all instances of y with the negated input variable x of this gate.

The obtained gate local CNFs are joined then in the overall circuit CNF by using the conjunction operation. Both
the size of the resulting CNF and the complexity of the conventional translation procedure are linear in the gate
number of the original combinational circuit.

For example, four additional variables e1, e2, e3 and e4 were supplemented the circuit shown in Figure 2. The
corresponding conventional CNF is shown at the second column in Table 1.

Given a conventional CNF formula the SAT problem may be restated as the problem of finding a variable value
assignment that satisfies every clause, taking into account that a clause is satisfied if at least one its literal is
equal to 1. Recall, a CNF formula is satisfiable if and only if there is a satisfying assignment of its literals which
simultaneously satisfies each of its member clauses.

The method of searching for synchronizing sequence for a logic circuit via Boolean satisfiability

Boolean SAT formulations are binary in essence. Introduced Boolean variables represent solution alternatives,
and Boolean formulas represent constraints imposes by the solved problem. All variable assignments satisfying
Boolean formulas are equivalent when solving the satisfiability problem. During the search for SAT solution of the
synchronizing sequence problem there is no cost mechanisms to favor one solution over another. Thus
formulating SAT problem of searching the shortest synchronizing sequence, we are able only to get the answer
whether some solution (of the predefined length) of our problem exists. That is why the problem of optimal
synchronizing sequence finding is solved regarding a priori assigned synchronizing sequence length. The

International Journal "Information Technologies & Knowledge" Vol.5 / 2011

364

problem is formulated as a problem of Boolean satisfiability, deriving a Boolean function such that an assignment
of variables that satisfy it (if it exists) defines a synchronizing sequence of the predefined size.
Thus, we are forced to reformate continuously the folding problem with increasing values of synchronizing
sequence length until a satisfiable problem formulation arises. Such a reformulation of the problem based on
enumeration of sequence length values seems cumbersome for logic circuits of great size, but below it will be
shown that the process of alternate CNF building for increasing synchronizing sequence length is iterative.
At the beginning we search for a synchronizing sequence X1 = (x1) of the length 1 and form conventional CNF C1
for the combinational circuit under test assuming that its primary inputs corresponding to primary inputs of
ancestor sequential circuit are (x11, x21, …, xn1) and primary inputs correspond to flip-flop outputs of ancestor
sequential circuit are (xn+11, xn+21, …, xn+k1). The values of the last variables are accepted to be don’t-care: xn+11 =
“–”, xn+21 = “–”, …, xn+k1 = “–” because we don’t know their initial values.

y1
3y1

2 = x4
3

y2
3y2

2 = x5
3

y1
1 = x4

2

y2
1 = x5

2

x4
1 = dc

x5
1 = dc

x1
3

x3
3

x2
3

x1
2

x3
2

x2
2

x1
1

x3
1

x2
1

 Figure 3. The process of augmentation of the number of blocks for the circuit of Figure 2

If such a manner formed CNF C1 is satisfiable we will obtain synchronizing sequence X1 = (x11, x21, …, xn1) of unit
length and the corresponding values of the circuit primary outputs y11, y21, …, yk1 – defining values of excitation
functions. Otherwise we should augment the experiment length and form the conventional CNF C2 to search for a
two cycle synchronizing sequence X2 = (x1, x2). So two block combinational circuit will be considered: the first
block is the circuit considered on the first step and the second one is a circuit identical to the first one but having
primary inputs (x12, x22, …, xn2) and xn+12 = y11, xn+22 = y21, …, xn+k2 = yk1. Its k primary inputs xn+12, xn+22, …, xn+k2
are connected with primary outputs y11, y21, …, yk1 of the first block circuit, identifying the variables y11, y21, …, yk1
and xn+12, xn+22, …, xn+k2, so we use xn+12, xn+22, …, xn+k2 instead of y11, y21, …, yk1 have been introduced earlier.
Then we again verify whether such a formed CNF C2 is satisfiable to test whether there exists synchronizing
sequence X2 = (x1, x2) of the length 2 and so on as long (Figure 3) as we will obtain satisfiable CNF or the
number of iterations exceeds the limit of iterations predefined in advance. In the last case our search fails and we
don’t find out any synchronizing sequence.

The peculiarities of search for synchronizing sequence via Boolean satisfiability

Here for illustration we consider the mentioned above example circuit (Figures 1 and 2) and find a synchronizing
sequence for it. Taking in mind the proposed method we construct one-block circuit (Figure 4) and the
conventional CNF C1 corresponding to it (the second column of Table 1). For the convenience of its future
augmentation (in the case if CNF C1 will be unsatisfiable) we place the inner variables x41, x51 forward of the
primary input variables x11, x21, x31. CNF C1 has 21 clauses. Before testing its satisfiability let substitute don’t-care
values for inner variables x41, x51 because their values are unknown and we don’t entitled to assign them as
distinct from values of primary input variables x11, x21, x31. Replacement of the values will simplify the conventional

International Journal "Information Technologies & Knowledge" Vol.5 / 2011

365

CNF C1. For example, three clauses of CNF – (x11 ∨ e11) (x41 ∨ e11) (x41 ∨x11 ∨e11) for NAND gate e11 are
replaced with (x11 ∨ e11) e11 (x11 ∨e11) or after simplification with only two simple clauses – e11 and x41.

y1
1

y1
1

e1
1

e2
1

e3
1

x2
1

x3
1

e4
1

x1
1

x2
1

x4
1

x4
1=dc

x5
1=dc

Figure 4. One-block combinational circuit for searching part of the sequential circuit shown in Figure 1

It should note that there exist some primitive gates that always have don’t-care on its outputs when they have
don’t-care at least in one input. Gates realizing XOR and equivalency functions are such ones. For example, four
clauses CNF for NXOR gate e21 – (x51 ∨ x21 ∨ e21) (x51 ∨x21 ∨ e21) (x51 ∨x21 ∨e11) (x51 ∨ x21 ∨e11) is
replaced with CNF (x21 ∨ e21) (x21 ∨ e21) (x21 ∨e11) (x21 ∨e11) that is always unsatisfiable. So, we may delete
fragments associated with such gates from CNF C1 taking the values of their output variables to be don’t-care.
Simplified conventional CNF C1sim for our example circuit (Figure 4) is shown in the second column of the second
row in Table 1. The CNF is unsatisfiable, so we have no synchronizing sequence of the unit length. More
precisely in the case in question we cannot initialize the first D flip-flop in the only cycle, while the synchronizing
sequence of the unit length for the second D flip-flop exists.

Table 1
Conventional conjunctive normal forms for example combinational circuits

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

CNF C1 for one-block circuit
x41 x51 x11 x21

 x31 e11 e21

 e31 e41 y11

 y21

– – 1 – –
 1 – – –
 – –
 e11
1 – – – –
 1 – – –
 – –
0 – 0 – –
 0 – – –
 – –
– 1 – 1 –
 – 1 – –
 – –
 e21
– 0 – 0 –
 – 1 – –
 – –
– 1 – 0 –
 – 0 – –

CNF C2 for two-block circuit
x41 x51 x11 x21 x31 e11 e21

 e31 e41 x42 x52 x12 x22

 x32 e12 e22 e32 e42 y12

 y22

– – – – – 1 –
 – – – – – –
 – – – – – –
 – e11
– – 0 – – – –
 – – – – – –
 – – – – – –
 –
– – – – – 0 –
 0 – – – – –
 – – – – – –
 – e31
– – – – 0 – –
 0 – – – – –
 – – – – – –
 –
– – – – 1 1 –
 1 – – – – –
 – – – – – –

International Journal "Information Technologies & Knowledge" Vol.5 / 2011

366

22
23
24
25
26
27
28

 – –
– 0 – 1 –
 – 0 – –
 – –
– – – – –
 0 – 0 –
 – –
 e31
– – – – 0
 – – 0 –
 – –
– – – – 1
 1 – 1 –
 – –
0 – – 0 –
 – – – 1
 – –
 e41
1 – – 1 –
 – – – 1
 – –
0 – – 1 –
 – – – 0
 – –
1 – – 0 –
 – – – 0
 – –
– – – – –
 – 1 1 –
 1 –
 y11
– – – – –
 – 0 0 –
 1 –
– – – – –
 – 1 0 –
 0 –
– – – – –
 – 0 1 –
 0 –
– – – – 0
 – – – –
 – 0
 y21
– – – – –
 – – – 0
 – 0
– – – – 1
 – – – 1
 – 1

 –
– – – – – – –
 – – – 0 – –
 – – – – – –
 – y21
– – – – 1 – –
 – – – – – –
 – – – – – –
 –
– – – – – – –
 – – – – 1 –
 – 1 – – – –
 – e12
– – – – – – –
 – – 1 – – –
 – 1 – – – –
 –
– – – – – – –
 – – 0 – 0 –
 – 0 – – – –
 –
– – – – – – –
 – – – 1 – 1
 – – 1 – – –
 – e22
– – – – – – –
 – – – 0 – 0
 – – 1 – – –
 –
– – – – – – –
 – – – 1 – 0
 – – 0 – – –
 –
– – – – – – –
 – – – 0 – 1
 – – 0 – – –
 –
– – – – – – –
 – – – – – –
 – 0 – 0 – –
 – e32
– – – – – – –
 – – – – – –
 0 – – 0 – –
 –
– – – – – – –
 – – – – – –
 1 1 – 1 – –
 –
– – – – – – –
 – – 0 – – 0
 – – – – 1 –
 – e42
– – – – – – –
 – – 1 – – 1
 – – – – 1 –
 –
– – – – – – –
 – – 0 – – 1
 – – – – 0 –
 –
– – – – – – –
 – – 1 – – 0

International Journal "Information Technologies & Knowledge" Vol.5 / 2011

367

 – – – – 0 –
 –
– – – – – – –
 – – – – – –
 – – 1 1 – 1
 – y12
– – – – – – –
 – – – – – –
 – – 0 0 – 1
 –
– – – – – – –
 – – – – – –
 – – 1 0 – 0
 –
– – – – – – –
 – – – – – –
 – – 0 1 – 0
 –
– – – – – – –
 – – – – – –
 0 – – – – –
 0 y22
– – – – – – –
 – – – – – –
 – – – – 0 –
 0
– – – – – – –
 – – – – – –
 1 – – – 1 –
 1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

CNF C1sim after C1 simplification
x41 x51 x11 x21

 x31 e11 e21

 e31 e41 y11

 y21

– – – – –
 1 – – –
 – –
 e11
– – 0 – –
 – – – –
 – –
– – – – –
 0 – 0 –
 – –
 e31
– – – – 0
 – – 0 –
 – –
– – – – 1
 1 – 1 –
 – –
– – – – –
 – – – –
 – –
 y11
– – – – –
 – – – –
 – 0
 y21
– – – – 1
 – – – –
 – –

CNF C2sim after C2 simplification
x41 x51 x11 x21 x31 e11 e21

 e31 e41 x42 x52 x12 x22

 x32 e12 e22 e32 e42 y12

 y22

– – – – – 1 –
 – – – – – –
 – – – – – –
 – e11
– – 0 – – – –
 – – – – – –
 – – – – – –
 –
– – – – – 0 –
 0 – – – – –
 – – – – – –
 – e31
– – – – 0 – –
 0 – – – – –
 – – – – – –
 –
– – – – 1 1 –
 1 – – – – –
 – – – – – –
 –
– – – – – – –
 – – – 0 – –
 – – – – – –
 – y21
– – – – 1 – –
 – – – – – –
 – – – – – –
 –

International Journal "Information Technologies & Knowledge" Vol.5 / 2011

368

– – – – – – –
 – – – – – –
 – 1 – – – –
 – e12
– – – – – – –
 – – – – 0 –
 – – – – – –
 –
– – – – – – –
 – – – 1 – 1
 – – 1 – – –
 – e22
– – – – – – –
 – – – 0 – 0
 – – 1 – – –
 –
– – – – – – –
 – – – 1 – 0
 – – 0 – – –
 –
– – – – – – –
 – – – 0 – 1
 – – 0 – – –
 –
– – – – – – –
 – – – – – –
 – 0 – 0 – –
 – e32
– – – – – – –
 – – – – – –
 0 – – 0 – –
 –
– – – – – – –
 – – – – – –
 1 1 – 1 – –
 –
– – – – – – –
 – – – – – –
 – – 1 1 – 1
 – y12
– – – – – – –
 – – – – – –
 – – 0 0 – 1
 –
– – – – – – –
 – – – – – –
 – – 1 0 – 0
 –
– – – – – – –
 – – – – – –
 – – 0 1 – 0
 –
– – – – – – –
 – – – – – –
 – – – – – –
 0 y22
– – – – – – –
 – – – – – –
 1 – – – – –
 –

International Journal "Information Technologies & Knowledge" Vol.5 / 2011

369

Further we construct two-block circuit (Figure 5). Its conventional CNF C2 (the third column of Table 1) turns out
simple enough: CNF C1 after renumbering its variable labels (the superscripts 2 are replaced for 1) is attached to
CNF C1sim. At that, the columns labeled y11, y21 of CNF C1sim and the columns x42, x52 of CNF C2 are merged. So
CNF C2 has 20 columns (instead of 11 columns of CNF C1 and C1sim) and 28 rows. Instead of including the sixth
row of CNF C1sim in CNF C2 we substitute x42 with don’t-care everywhere in C2. After that we obtain the simplified
form of CNF C2 – CNF C2sim (the third column of Table 1). After testing CNF C2sim we discover that there exists its
satisfying assignment:

x41 x51 x11 x21 x31 e11e21e31e41x42 x52 x12 x22

 x32 e12e22e32e42y12 y22
– – 0 – 1 1 – 0 – –
 0 0 0 1 1 1 0 – 0
 0 .

That is x11 x31 e11e31x52x12x22 x32 e12 e22e32y12y22 in the form of conjunction. So we obtain the following
synchronizing sequence of the length 2:

X2 = ((0–1, 001).
Thus to initialize the sequential circuit (Figure 1) we should feed it at the first cycle with input signals x1 = 0, x2 =
0, x3 = 1 or x1 = 0, x2 = 1, x3 = 1, then at the next cycle with input signals x1 = 0, x2 = 0, x3 = 1. After that both D
flip-flops pass into the state 0.

Figure 5. Two-block combinational circuit for searching part of the sequential circuit shown in Figure 1

Here one should draw attention that there are some peculiarities of searching for synchronizing sequence via
Boolean satisfiability. They result from existence of don’t-care signals in tested circuit that can cause local
fragments of conventional CNF to be unsatisfiable though the tested circuit has a synchronizing sequence. That
is because don’t-care signal run through this circuit fragment from input to output. The characteristic example of
such a case is some gate, such as XOR, or some subcircuit realizing such a function. To don’t miss a
synchronizing sequence for a circuit having such fragments, when testing CNF satisfiability it should use SAT
solvers (for instance, SAT solver PicoSAT [Biere, 2008]) that permit to give proof traces from which it is possible
to extract a reason why the tested CNF is erroneous. In that case we can substitute the unsatisfiable fragment

e1
2

e2
2

x4
2 e3

2

x2
2

x3
2

e4
2

y1
2

y1
2

x5
2

x1
2

x2
2

x4
2

e1
1

e2
1

e3
1

x2
1

x3
1

e4
1

x1
1

x2
1

x4
1

 =dc
x4

1

x5
1

 =dc

 =dc

International Journal "Information Technologies & Knowledge" Vol.5 / 2011

370

with assigning don’t-care value to the variable corresponding to the appropriate fragment output signal, just as we
have substituted CNF fragments concerned with XOR gate.

Conclusion

In this paper the problem of search for synchronizing sequence for logic circuits with memory elements is
considered. A novel reformulation of the problem as the Boolean satisfiability problem solved with any existing
SAT-solver was developed. The proposed method is used when testing a memory block whether D flip-flops are
good or faulty.

Bibliography
[Kohavi, 1978] Z. Kohavi. Switching and Finite Automata Theory. The McGraw-Hill College, 2 edition, 1978.
[Gill, 1962] A. Gill. Introduction to the Theory of Finite-state Machines, McGraw-Hill, 1962.
[Lee, 1996] D. Lee and M. Yannakakis. Principles and methods of testing finite state machine – a survey. In: Proceedings of

the IEEE, 84(8), August 1996, pp. 1090–1123.
[Eppstein, 1990] D. Eppstein. Reset sequences for monotonic automata. In: SIAM J. on Computing, vol. 19, no. 3, 1990,

pp. 500–510.
[Eén] N. Eén, and N. Sörensson. MiniSat. http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat.
[Mahajan, 2005] Y. Mahajan, Z. Fu, and S. Malik. Zchaff2004: An Efficient SAT Solver. In: Theory and Applications of

Satisfiability Testing (2004 SAT Solver Competition and QBF Solver Evaluation (Invited Papers)), Springer Berlin /
Heidelberg, 2005, pp. 360–375.

[Goldberg, 2002] E. Goldberg, and Y. Novikov. BerkMin: A Fast and Robust SAT-Solver. In: Design, Automation, and Test in
Europe, March 2002, pp. 142–149.

[Kunz, 2002] W. Kunz, J. Marques-Silva, S. Malik. SAT and ATPG: Algorithms for Boolean Decision Problems. In: Logic
synthesis and Verification. Ed. S.Hassoun, T.Sasao and R.K.Brayton. Kluwer Academic Publishers, 2002, pp. 309–341.

[Biere, 2008] A. Biere. PicoSAT Essentials. In: Journal on Satisfiability. Boolean Modeling and Computation, 2008, vol. 4,
pp. 75–97.

The research was partially supported by the Fond of Fundamental Researches of Belarus (Project Ф11ОБ–041).

Authors' Information

Liudmila Cheremisinova – Principal Researcher, The United Institute of Informatics Problems
of National Academy of Sciences of Belarus, Surganov str., 6, Minsk, 220012, Belarus, e-mail:
cld@newman.bas-net.by

Major Fields of Scientific Research: Logic Design, CAD systems, optimization

http://www.cs.chalmers.se/Cs/Research/�
http://www.springerlink.com/content/6xptd6egkga9/?p=b96d3d83adaf4c7e80ebc9a7f5bdaa98&pi=0�
http://www.springerlink.com/content/6xptd6egkga9/?p=b96d3d83adaf4c7e80ebc9a7f5bdaa98&pi=0�
http://www.springerlink.com/content/6xptd6egkga9/?p=b96d3d83adaf4c7e80ebc9a7f5bdaa98&pi=0�
mailto:cld@newman.bas-net.by�

	Introduction
	Current Work in Digital Library Content Analysis
	Needs of Content Analysis in the Iconographical Art Domain
	"Virtual Encyclopedia of the Bulgarian Iconography” Multimedia Digital Library
	Analyzing and Synthesizing Services in BIDL
	Implementation of the Analyzing and Synthesizing Services in BIDL
	Acknowledgements
	Bibliography
	Authors' Information
	Introduction
	Goals and tasks
	Research methods and models
	Conclusions
	Acknowledgments
	References
	Authors’information
	Introduction
	1. What is Telecommunication?
	2. Scalable Models of Overall Telecommunication Systems
	2.1. Reference Models on the Virtual Devices Level
	2.2. Reference Models on the Telecommunication System Level
	2.3. National Telecommunications Level Reference Models
	2.4. Global Telecommunication System level Reference Models
	2.5. Inter-Conceptual Interactions and Models’ Scalability
	3. The Overall Versus End-to-End Approach to Telecommunication Network Performance
	3.1. End-to-end Network Approach
	3.2. Overall Telecommunication System Approach
	4. States’ Models Scalability
	4.1. Network’s Call/Connection Streams State
	4.2. Network’s Aggregative Device State
	5. Parameters’ Classification Based on Their Values' Establishing Method
	6. Causal Classification of Values
	7. Overall Telecommunication System’s Parameters’ Notation System
	Conclusion
	Bibliography
	Authors' Information
	Introduction
	The problem statement
	SAT-based approach to solving the problem of synchronizing sequence search
	The method of searching for synchronizing sequence for a logic circuit via Boolean satisfiability
	The peculiarities of search for synchronizing sequence via Boolean satisfiability
	Conclusion
	Bibliography
	Authors' Information
	Introduction
	Methods of estimating the Hurst exponent
	Modelling of fractal Brownian motion
	Investigation Results: Stationary time series.
	Research results: nonstationary time series
	Examples of real time series
	Conclusion
	Bibliography
	Authors' Information
	Iurii Krak, Bogdan Trotsenko, Julia Barchukova
	Introduction and problem statement
	Analysis and formalization of fingerspelling alphabet based on natural parameters
	Informational-parametric model of fingerspelling units
	Analyses of fingerspelling units with the help of specification system
	Software implementation of modeling of a three-dimensional model of a hand and animation of fingerspelling process
	Conclusion
	Acknowledgment
	Bibliography
	Authors' Information

