
International Journal "Information Technologies & Knowledge" Vol.5, Number 1, 2011 

 

77 

 

DIFFERENTIAL EVOLUTION – PARTICLE SWARM OPTIMIZATION 

Nuria Gómez Blas, Alberto Arteta, Luis F. de Mingo 
 

Abstract: This paper shows the Particle Swarm Optimization algorithm with a Differential Evolution. Each 
candidate solution is sampled uniformly in [−5,5] D, whereDdenotes the search space dimension, and the 
evolution is performed with a classical PSO algorithm and a classical DE/x/1 algorithm according to a random 
threshold.  

Keywords: Benchmarking, Black-box optimization, Direct search, Evolutionary computation, Particle Swarm 
Optimizacin, Differential Evolution 

Categories:G.1.6 [Numerical Analysis]: Optimization-global optimization, unconstrained optimization; F.2.1 
[Analysis of Algorithms and Problem Complexity]: Numerical Algorithms and Problems. 

Introduction  

A variety of general search techniques can be employed to locate a solution in a feasible solution space. Most 
techniques fit into one of the three broad classes. The first major class involves calculus-based techniques. 
These techniques tend to work quite efficiently on solution spaces with “friendly” landscapes. The second major 
class involves enumerative techniques, which search (implicitly or explicitly) every point in the solution space. 
Due to their computational intensity, their usefulness is limited when solving large problems. The third major class 
of search techniques is the guided random search. Guided searches are similar to enumerative techniques, but 
they employ heuristics to enhance the search [14]. 

Evolutionary algorithms (EAs) are one of the most interesting types of guided random search techniques. EAs are 
a mathematical modeling paradigm inspired by Darwin's theory of evolution. An EA adapts during the search 
process, using the information it discovers to break the curse of dimensionality that makes non-random and 
exhaustive search methods computationally intractable. In exchange for their efficiency, most EAs sacrifice the 
guarantee of locating the global optimum. 

Differential evolution (DE) and Particle Swarm Optimization are both stochastic optimization techniques. They 
produce good results on both real life problems and optimization problems. A simple mixture between those two 
algorithms, called Differential Evolution – Particle Swarm Optimization (DE-PSO), is explained in the following 
sections. The explanation will no longer use the sine function, but the more frequently used sphere function. Also 
note that the explanation for this algorithm will not use a single value, but arrays (vectors) to represent particles 
and velocities. Therefore it is compatible with more dimensions [2, 3, 4].  

Differential evolution  

Differential evolution (DE) is a simple evolutionary algorithm for numerical optimization whose most novel feature 
is that it mutates vectors by adding weighted, random vector differentials to them [1].Differential evolution is, like 
PSO, a stochastic and population-based optimization technique. It was first introduced in 1996 by Price and Storn 



International Journal "Information Technologies & Knowledge" Vol.5, Number 1, 2011 

 

78 

[13]. The algorithm is a modification of genetic annealing, which is beyond the scope of this paper and will not be 
discussed. Differential evolution is capable of handling non-differentiable, nonlinear and multimodal objective 
functions and is fairly fast in doing so. DE has participated in the First International IEEE Competition on 
Evolutionary Optimization (ICEO) and was proven to be one of the fastest evolutionary algorithms [10]. The DE 
algorithm also works with a population of potential solutions. The principle is the same as PSO: a particle can 
gain by using information from other particles as well as the results of their own search. However, in the case of 
differential evolution, that information is sampled randomly. The classical DE algorithm works as shown in the 
pseudo code of figure 1. 

 

 
 

Figure 1: Pseudo code for DE written in Netbeans. 

 

Step 1: define a population  
 
For the purpose of this example, a simple 2-dimensional (having 2 variables x1 and x2) sphere function is 
suitable to search for a minimum. The function rule is as follows:  

 

Rand(0,1) * (bu-bl) + b 
 

By drawing the function on a graph it is easily perceived that the global minimum is at coordinates [0,0]. To prove 
this general truth, a population of 5 particles can be randomly initialized in a search space bounded by [-10,10]. 
Each particle is presented by an array, or formally speaking by a vector, of D values where D represents the 
dimension of the search space. Each component of the array can be randomly initialized using equation (a) to 
initialize a random particle between bounds where rand(0,1) indicates a random number between 0 and 1, bu is 



International Journal "Information Technologies & Knowledge" Vol.5, Number 1, 2011 

 

79 

the value of the upper bound and bl is the lower bound. Because the problem requires the search for a global 
minimum, the particle with the smallest fitness value is closest to the optimum. The table below shows 5 particles 
and their fitness values upon initialization. The population size does not change during the process. 

 

 
 

Table 1: Each particle is an array of D values where D is the dimension. 

 

Step 2: mutation  
 
The next step consists of making a mutated vector through differential mutation. It is a process whereby for each 
particle 3 different randomly chosen particles (r1,r2,r3) create a mutated particle mi (i=1,2,…,population size). 
This mutated vector is obtained by applying the formula below for each dimension:  

mij = r1j + F * (r2j – r3j) 

 

With j being the current dimension and F being the positive differential weight value usually between 0 and 1. This 
value is initialized before the loop and thus the same for every particle in the population. The formula adds the 
weighted difference between 2 population members to a third member. The table below shows an example of a 
mutation with the differential weight F set to 1. 

 

 
Table 2: Mutant vector for target particle 1 with F=1. 

 

Step 3: crossover  
 
Crossover is a term used when parameters of the mutant are mixed with parameters of the target vector to form a 
trial vector z. Which parameters should be crossed is depending on probability.Figure2 shows that 2 out of 5 
parameters of the mutant vector were chosen to cross over.  



International Journal "Information Technologies & Knowledge" Vol.5, Number 1, 2011 

 

80 

 
 

Figure2: Crossover principle. 

 

 In Differential Evolution there are 2 main forms of crossover: binomial and exponential. Both ways use a 
parameter called the Crossover Probability (CR) which is a value between 0 and 1. To understand DE, it is 
enough to only explain binomial crossover. Many publications explain other ways and should be looked into when 
more information is necessary.  

 

 

 
 

Figure3: Pseudo code for binomial crossover ( for a minimization) 

 

By applying binomial crossover, one should assign a random value between 0 and 1 and compare it to the 
crossover probability CR. If CR is bigger, the parameter zi becomes the mutant parameter yi. If it is smaller, zi is 
equal to the parameter of the current target element, xi, and thus stays the same. 

 

 
 

Table 5: Binomial crossover for a component of particle 1 with CR=0.5 and twice rand=0.9135 for convenience. 

 

 



International Journal "Information Technologies & Knowledge" Vol.5, Number 1, 2011 

 

81 

Step 4: selection  
 
Once the new trial vector z is created, the algorithm has to decide whether or not it should become a member of 
the new generation (or otherwise known as iteration t+1). This is done by comparing fitness values with the 
original element of the population. If the fitness of the trial vector is better (i.e. lower for a minimization), itshould 
be the new member of the population. If it is not better, the current member should be kept unchanged. This 
process continues, for example, until a maximum number of iterations is exceeded.  

 

Variants of DE  
 
The above mentioned is only the basic variant of DE, but there are many others. In order to classify variants, the 
following notation is used: DE/x/y/z, with the following components:  
 

X: specifies the vector to be mutated.This can be ‘rand’ for a randomly chosen population vector or ‘best’ for the 
vector with the best fitness value. 

Y: The number of difference vectors used.  

Z: specifies the crossover scheme. This can be ‘bin’ for a binomial scheme or ‘exp’ for an exponential crossover.  

Based upon this notation, the version explained in this paper is written as DE/rand/1/bin. DE/best/2/bin is an 
example of a variant proposed by Price and is proven to be effective. 2 difference vectors are used and seem to 
improve the diversity of the population if the population size is high enough. For this method, formula (b) can be 
rewritten:  

 

(c) vij = xbest + F * (r1j + r2j – r3j – r4j) 

 

Hybrid DE- PSO  

 

DE-PSO is basically a Differential Evolution algorithm mixed with ideas of Particle Swarm Optimization. It was 
proposed by Millie Pant, Radha Thangaraj, Crina Grosan and Ajith Abraham in their paper called “Hybrid 
Differential Evolution – Particle Swarm Optimization Algorithm for Solving Global Optimization Problems”. This 
section explains how the algorithm works according to the very detailed pseudo code presented in figure4, written 
as a minimizer.  

 



International Journal "Information Technologies & Knowledge" Vol.5, Number 1, 2011 

 

82 

 
 

Figure4: Pseudo code for DE-PSO 

 

Step 1: defining population  
This step is completed in the same way as PSO and DE. Please note that you should define your population and 
their velocities as two 2-D arrays when programming. The higher the dimension, the more values each particle 
will have. A particle in a 2-D search space can be defined as 2 points on a graphs, namely x and y. When you 
have a particle in a 3-D space, it needs 3 points to be represented on x,y,z axes. To initialize the velocities, one 
can either choose random values between the predefined bounds, or zero.  

 

Step 2: performing DE  
First, 3 random particles (r1,r2 and r3) should be chosen in such a fashion that they are different from each other. 
The same principle is applied in DE mutation. The second task is to create a mutated value for eachdimension j 
of the particle. This is done by utilizing equation (b). When the mutation is done for every dimension, one must 
evaluate the mutated particle with the fitness function, and compare it to the evaluation of the non-mutated, 



International Journal "Information Technologies & Knowledge" Vol.5, Number 1, 2011 

 

83 

current particle. If it is smaller, the mutated particle should replace the old one in the population. Though if it is 
bigger, the particle swarm optimizer should be triggered. 

 
Step 3: performing PSO  
If the DE-part of the algorithm did not find a better solution, the PSO is activated. A new particle should be 
created according to formulas (d) for the velocity and (e) for the new position. A basic velocity and position 
clamping should be performed here as well. It is enough to just check if the new velocity or position exceeds the 
bounds in which the algorithm is performed. If the newly created particle is proven to be better, it should be 
replaced by the old one for the next generation. Both personal best and global best particle vectors should be 
updated as well. This process is again repeated until the stopping condition is met.  
 

(d) vi(t+1) = w*vi (t) + c1*r1*( pBest - xi) + c2* r2 *( gBest - xi) 

 

(e) xi(t+1) = xi (t) + vi (t+1) 

Expansion  
More hybrid versions between Particle Swarm Optimization and Differential Evolution have been proposed. One 
of those is the version proposed by José García, Enrique Alba and Javier Apolloni in their work: “ Noiseless 
Functions Black-Box Optimization: Evaluation of a Hybrid Particle Swarm with Differential Operators”. Their 
model is also simple and is proven to obtain an accurate level of coverage range. The algorithm also contains 2 
main parts. The first is the differential variation, where new velocities and positions are calculated according to: 

 

(f) v’ij = w * vij + μ + φ * (gbestj - xij) 

(g) x’ij = xij + v’ij 
 

Where j is the dimension and i=1,2,…, population size. μ is a scaling factor (μ = UN(0,1)) and φ is the social 
coefficient (φ = UN(0,1)). The second part is the mutation, which is calculated according to formula (a). It is 
basically a new particle position between the specified bounds. 

Bibliography 
[1] S. H. Brooks. A discussion of random methods for seeking maxima.Operations Research, 6:244– 251, 1958. 

[2] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of 
the noiseless functions. Technical Report 2009/20, Research Center PPE, 2009.  

[3] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2009: Experimental 
setup. Technical Report RR-6828, INRIA, 2009.  

[4] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless 
functions definitions. Technical Report RR-6829, INRIA, 2009. 

[5] M. J. D. Powell. The NEWUOA software for unconstrained optimization without 
derivatives.LargeScaleNonlinearOptimization,pages255–297, 2006. 

[6] J. Nelder and R. Mead. The downhill simplex method. Computer Journal, 7:308–313, 1965. 



International Journal "Information Technologies & Knowledge" Vol.5, Number 1, 2011 

 

84 

[7] T Jayabarathi, Sandeep Chalasani, Zameer Ahmed Shaik, Nishchal Deep Kodali; ”Hybrid Differential Evolution and 
Particle Swarm Optimization Based Solutions to Short Term Hydro Thermal Scheduling”, WSEAS Transactions on 
Power Systems Issue 11, Volume 2, pp. , ISSN: 1790-5060, 2007.  

[8] Piao Haiguo, Wang Zhixin, Zhang Huaqiang, ”Cooperative-PSO-Based PID Neural Network Integral Control Strategy and 
Simulation Research with Asynchronous Motor Controller Design”, WSEAS Transactions on Circuits and Systems 
Volume 8, pp. 136-141, ISSN: 1109-2734, 2009.  

[9] Lijia Ren, Xiuchen Jiang, Gehao Sheng, Wu B;”A New Study in Maintenance for Transmission Lines”, WSEAS 
Transactions on Circuits and Systems Volume 7, pp. 53-37, ISSN: 1109-2734, 2008.  

[10] Kenneth Price. Differential evolution vs. the functions of the second ICEO. In Proceedings of the IEEE International 
Congress on Evolutionary Computation, pages 153–157, 1997.  

[11] Kenneth Price, Rainer M. Storn, and Jouni A. Lampinen. Differential Evolution: A Practical Approach to Global 
Optimization (Natural Computing Series). Springer- Verlag New York, Inc., 2005. ISBN 3540209506. URL 
http://portal.acm.org/citation.cfm?id=1121631.  

[12] K.V. Price. Differential evolution: a fast and simple numerical optimizer. In Fuzzy Information Processing Society, 1996. 
NAFIPS. 1996 Biennial Conference of the  North American, pages 524–527, 1996. doi: {10.1109/NAFIPS.1996.534790}. 

[13] Storn, R., Price, K., “Differential evolution—A simple and efficient heuristic for global optimization over continuous 
spaces”, Technical Report TR-95-012, International Computer Science Institute, Berkeley, CA, USA (1995). 

[14] Paul K. Bergey, and Cliff Ragsdale; Modified differential evolution: a greedy random strategy for genetic recombination. 
The International Journal of Management Science. Volume 33, Issue 3, June 2005, Pages 255-265. 
doi:10.1016/j.omega.2004.04.009 

Acknowledgment 

This work has been partially supported by the Spanish Research Projects: 
 
TRA2010-15645. “COMUNICACIONES EN MALLA PARA VEHICULOS E INFRAESTRUCTURAS 
INTELIGENTES” (Mesh communication with intelligent vehicles). (2010) 
 

TEC2010-21303-C04-02. “ESTRUCTURAS RESONANTES PARA APLICACIONES DE SEÑAL FOTONICA DE 
BANDA ANCHA ”. (2010). 

Authors' Information 

Nuria Gómez Blas – Associate professor U.P.M Crtra Valencia km 7, Madrid-28031, Spain; 
e-mail: ngomez@eui.upm.es Research: DNA computing, Membrane computing, Education on Applied 
Mathematics and Informatics 

Albeto Arteta – Associate professor U.P.M Crtra Valencia km 7, Madrid-28031, Spain; 
e-mail: aarteta@eui.upm.esResearch: DNA computing, Membrane computing, Education on Applied 
Mathematics and Informatics 

Luis F. de Mingo – Associate professor U.P.M Crtra Valencia km 7, Madrid-28031, Spain; e-mail: 
lfmingo@eui.upm.es  Research:,Artificial Intelligence, Social Intelligence, Education on Applied Mathematics and 
Informatics 
  

mailto:ngomez@eui.upm.es�
mailto:aarteta@eui.upm.es�
mailto:lfmingo@eui.upm.es�

	Introduction
	Method
	Results
	Conclusion
	Acknowledgement
	References
	Autors Information
	Introduction
	Compartmental R-neuron with Multidimensional Epanechnikov Kernels and Its Learning Algorithm
	Evolving Cascade Neural Network
	Conclusion
	Acknowledgements
	Bibliography
	Authors' Information
	Introduction
	Sufficiency and necessity regions for metric search
	Sufficiency conditions analysis when having one pivot point
	Sufficiency region construction under one pivot point
	Sufficiency region construction on   pivot points
	Conclusion
	Acknowledgements
	Bibliography
	Authors' Information
	Introduction
	Evaluating of genetic factors effect in patients with discirculatory encephalopathy
	Regularities systems comparing
	Conclusion
	Acknowledgements
	Bibliography
	Authors' Information
	Introduction
	matrices with different rows
	Greedy algorithm for solving (P2')
	Properties of
	Evaluation of Results – Experiments
	Bibliography
	Authors' Information
	Introduction
	Segmentation
	Histology image processing
	Experimentation
	Conclusions
	References
	Authors’ Information
	Introduction
	Differential evolution
	Hybrid DE- PSO
	Bibliography
	Acknowledgment
	Authors' Information
	Introduction
	Computational Model
	Conclusions
	Bibliography
	Authors’ Information
	Introduction
	Formulation of the problem
	Description of the first method
	Description of the second method
	Conclusion
	Acknowledgment
	Bibliography
	Authors' Information



