
International Journal “Information Theories and Applications”, Vol. 29, Number 4, © 2022

381

STORING RDF GRAPHS USING NL-ADDRESSING1

Krassimira Ivanova, Vitalii Velychko, Krassimir Markov

Abstract: NL-addressing is a possibility to access information using natural

language words as addresses of the information stored in the multi-dimensional

numbered information spaces. For this purpose the internal encoding of the

letters is used to generate corresponded co-ordinates. The tool for working in

such style is named OntoArM. Its main principles, functions and using for

storing RDF graphs are outlined in this paper.

Keywords: NL-addressing, RDF graphs, ontology representations.

ACM Classification Keywords: D.4.2 Storage Management; E.2 Data Storage

Representations.

Introduction

Resource Description Framework (RDF) is the W3C recommendation for

semantic annotations in the Semantic Web. RDF is a standard syntax for

Semantic Web annotations and languages [Klyne & Carroll, 2004].

The underlying structure of any expression in RDF is a collection of triples, each

consisting of a subject, a predicate and an object. A set of such triples is

called an RDF graph. This can be illustrated by a node and directed-arc

diagram, in which each triple is represented as a node-arc-node link (hence the

term "graph") (Fig.1).

Fig. 1. RDF triple

1
 Reprinted from: G.Setlak, M.Alexandrov, K.Markov (Eds.), Artificial Intelligence Methods and

Techniques for Business and Engineering Applications. ITHEA, 2012, Rzeszow, Poland; Sofia,
Bulgaria, ISBN: 978-954-16-0057-3 (printed), ISBN: 978-954-16-0058-0 (online). pp. 84-98

International Journal “Information Theories and Applications”, Vol. 29, Number 4, © 2022

382

Each triple represents a statement of a relationship between the things denoted

by the nodes that it links. Each triple has three parts: (1) subject, (2) object, and

(3) a predicate (also called a property) that denotes a relationship. The direction

of the arc is significant: it always points toward the object. The nodes of an RDF

graph are its subjects and objects.

The assertion of an RDF triple says that some relationship, indicated by the

predicate, holds between the things denoted by subject and object of the triple.

The assertion of an RDF graph amounts to asserting all the triples in it, so the

meaning of an RDF graph is the conjunction (logical AND) of the statements

corresponding to all the triples it contains. A formal account of the meaning of

RDF graphs is given in [Hayes, 2004].

The state of the art with respect to existing storage and retrieval technologies

for RDF data is given in [Hertel et al, 2009]. Different repositories are

imaginable, e.g. main memory, files or databases. RDF schemas and instances

can be efficiently accessed and manipulated in main memory. For persistent

storage the data can be serialized to files, but for large amounts of data the use

of a database management system is more reasonable. Examining currently

existing RDF stores we found that they are using relational and object-relational

database management systems. Storing RDF data in a relational database

requires an appropriate table design. There are different approaches that can

be classified in (1) generic schemas, i.e. schemas that do not depend on

the ontology, and (2) ontology specific schemas.

In the following we will present a new approach for organizing graph data

bases, called Natural Language Addressing (NL-Addressing) and will illustrate it

for the most important ontological table designs.

Natural Language Addressing (NL-Addressing)

The idea of Natural Language Addressing (NL-Addressing) is very simple. It is

based on the computer internal representation of the word as strings of codes in

any system of encoding (ASCII, UNICODE, etc.).

For example, the ASCII encoding of the word „accession” has the next

representation: 97 99 99 101 115 115 105 111 110. It may be used as co-

International Journal “Information Theories and Applications”, Vol. 29, Number 4, © 2022

383

ordinate array, which indicates a point in the multidimensional information

space, where the corresponded information may be stored.

It is clear, the words have different lengths and, in addition, some phrases may

be assumed as single concepts. This means that we need a tool for managing

multidimensional information spaces with possibility to support all needed

dimensions in one integrated structure.

The independence of dimensionality limitations is very important for developing

new intelligent systems aimed to process high-dimensional data. To achieve

this, we need information models and corresponding access methods to cross

the boundary of the dimensional limitations and to obtain the possibility to work

with information spaces with variable and practically unlimited number of

dimensions. Such possibility is given by the Multi-Dimensional Information

Model (MDIM) [Markov, 2004] and correspond Multi-Dimensional Access

Method (MDAM) [Markov, 1984]. Its advantages have been demonstrated in

many practical realizations during more than twenty-five years. In recent years,

this kind of memory organization has been implemented in the area of intelligent

systems memory structuring for several data mining tasks and especially in the

area of association rules mining [Mitov et al, 2009]. Here we will show its

applicability for organizing of RDF stores.

Multi-dimensional numbered information spaces

Main structures of Multi-Dimensional Information Model (MDIM) are basic

information elements, information spaces, indexes and meta-indexes, and

aggregates. The definitions of these structures are remembered below.

The basic information element (BIE) of МDIМ is an arbitrary long string of

machine codes (bytes). When it is necessary, the string may be parceled out by

lines. The length of the lines may be variable.

Let the universal set UBIE be the set of all BIE.

Let E1 be a set of basic information elements. Let 1 be а function, which

defines а biunique correspondence between elements of the set E1 and

elements of the set C1 of positive integer numbers, i.e.:

International Journal “Information Theories and Applications”, Vol. 29, Number 4, © 2022

384

E1 = {ei | ei  UBIE , i=1,…, m1}, C1 = {c1 | ci  N, i=1,…, m1}; 1 : E1↔ C1

The elements of C1 are said to be numbers (co-ordinates) of the elements of E1.

The triple S1 = (E1, μ1, C1) is said to be а numbered information space of

range 1 (one-dimensional or one-domain information space).

Let NIS1 be a set of all one-dimensional information spaces.

The triple S2 = (E2, μ2, C2) is said to be а numbered information space of

range 2 (two-dimensional or multi-domain information space of range two) iff

the elements of E2 are numbered information spaces of range one (i.e. belong

to the set NIS1) and 2 is а function which defines а biunique correspondence

between elements of E2 and elements of the set C2 of positive integer numbers,

i.e.:

E2 = {ei | ei  NIS1 , i=1,…, m2}, C2 = {ci | ci  N, i=1,…, m2}; 2 : E2↔ C2

Let NISn-1 be a set of all (n-1)-dimensional information spaces.

The triple Sn = (En, μn, Cn) is said to be а numbered information space of

range n

(n- dimensional or multi-domain information space) iff the elements of En are

numbered information spaces of range n-1 (belong to the set NISn-1) and n is а

function which defines а biunique correspondence between elements of En and

elements of the set Cn of positive integer numbers, i.e.:

En = {ej | ej  NISn-1 , j=1,…, mn}, Cn = {cj | cj  N, j=1,…, mn}; n : En↔ Cn

The information space Sn, which contains all information spaces of a given

application is called information base of range n. The concept information

base without indication of the range is used as generalized concept to denote

all available information spaces.

The sequence A = (cn, cn-1, …, c1), where ci  Ci, i=1, …, n is called

multidimensional space address of range n of a basic information element.

Every space address of range m, m < n, may be extended to space address of

International Journal “Information Theories and Applications”, Vol. 29, Number 4, © 2022

385

range n by adding leading n-m zero codes. Every sequence of space addresses

A1, A2, …, Ak, where k is arbitrary positive number, is said to be a space index.

Every index may be considered as a basic information element, i.e. as a string,

and may be stored in a point of any information space. In such case, it will have

a multidimensional space address, which may be pointed in the other indexes,

and, this way, we may build a hierarchy of indexes. Therefore, every index,

which points only to indexes, is called meta-index.

The approach of representing the interconnections between elements of the

information spaces using (hierarchies) of meta-indexes is called poly-

indexation.

Let G = {Si | i=1, …, n} be a set of numbered information spaces.

Let τ = {νij : Si → Sj | i=const, j=1, …, n} be a set of mappings of one "main"

numbered information space Si  G | i=const, into the others SJ  G, j=1, …, n ,

and, in particular, into itself.

The couple: D = (G, τ) is said to be an "aggregate".

It is clear, we can build m aggregates using the set G because every

information space SJ  G, j=1, …, n, may be chosen to be the main information

space.

Operations in the MDIM

After presenting the information structures, we need to remember the

operations, which are admissible in the model. In MDIM, we assume that all

information elements of all information spaces exist.

If for any Si : Ei = Ø ˄ Ci = Ø , than it is called empty.

Usually, most of the information elements and spaces are empty. This is very

important for practical realizations.

Because of the rule that all structures exist, we need only two operations with a

BIE: updating and getting the value and two service operations: getting the

length of a BIE and positioning in a BIE.

International Journal “Information Theories and Applications”, Vol. 29, Number 4, © 2022

386

Updating, or simply – writing the element, has several modifications with

obvious meaning: writing as a whole; appending/inserting; cutting/replacing a

part; deleting.

There is only one operation for getting the value of a BIE, i.e. read a portion

from a BIE starting from given position. We may receive the whole BIE if the

starting position is the beginning of BIE and the length of the portion is equal to

the BIE length.

We have only one operation with a single space – clearing (deleting) the

space, i.e. replacing all BIE of the space with Ø (empty BIE). After this

operation, all BIE of the space will have zero length. Really, the space is

cleared via replacing it with empty space.

We may provide two operations with two spaces: (1) copying and (2) moving

the first space in the second. The modifications concern how the BIE in the

recipient space are processed. We may have: copy/move with clearing the

recipient space; copy/move with merging the spaces.

The first modifications first clear the recipient space and after that provide a

copy or move operation. The second modifications may have two types of

processing: destructive or constructive. The destructive merging may be

"conservative" or "alternative". In the conservative approach, the BIE of

recipient space remains in the result if it is with none zero length. In the other

approach – the BIE from donor space remains in the result. In the constructive

merging the result is any composition of the corresponding BIE of the two

spaces.

Of course, the move operation deletes the donor space after the operation.

Special kind of operations concerns the navigation in a space. We may receive

the space address of the next or previous, empty or non-empty, elements of

the space starting from any given co-ordinates.

The possibility to count the number of non empty elements of a given space is

useful for practical realizations.

Operations with indexes, meta-indexes, and aggregates in the MDIM are based

on the classical logical operations – intersection, union, and supplement, but

International Journal “Information Theories and Applications”, Vol. 29, Number 4, © 2022

387

these operations are not so trivial. Because of the complexity of the structure of

the information spaces, these operations have two different realizations.

Every information space is built by two sets: the set of co-ordinates and the set

of information elements. Because of this, the operations with indexes, meta-

indexes, and aggregates may be classified in two main types: (1) operations

based only on

co-ordinates, regardless of the content of the structures; (2) operations, which

take in account the content of the structures:

― The operations based only on the co-ordinates are aimed to support

information processing of analytically given information structures. For

instance, such structure is the table, which may be represented by an

aggregate. Aggregates may be assumed as an extension of the relations

in the sense of the model of Codd [Codd, 1970]. The relation may be

represented by an aggregate if the aggregation mapping is one-one

mapping. Therefore, the aggregate is a more universal structure than the

relation and the operations with aggregates include those of relation

theory. What is the new is that the mappings of aggregates may be not

one-one mappings.

― In the second case, the existence and the content of non empty

structures determine the operations, which can be grouped

corresponding to the main information structures: elements, spaces,

indexes, and meta-indexes. For instance, such operation is the

projection, which is the analytically given space index of non-empty

structures. The projection is given when some coordinates (in arbitrary

positions) are fixed and the other coordinates vary for all possible values

of coordinates, where non-empty elements exist. Some given values of

coordinates may be omitted during processing.

Other operations are transferring from one structure to another, information

search, sorting, making reports, generalization, clustering, classification, etc.

OntoArM

The program realization of MDIM is called Multi-Domain Access Method

(MDAM). For a long period, it has been used as a basis for organization of

various information bases. There exist several realizations of MDAM for

International Journal “Information Theories and Applications”, Vol. 29, Number 4, © 2022

388

different hardware and/or software platforms. The most resent one is the FOI

Archive Manager – ArM [Markov et al, 2008]. The newest MDAM realization is

called ArM32 (for MS Windows). [Markov, 2004]

The OntoArM is an ontological graph oriented access method but not a

middleware in the sense of [Hertel et al, 2009]. It is an upgrade of ArM32.

The OntoArM ontological elements are organized in ontological graph spaces

with variable ranges. There is no limit for the ranges of the spaces. Every

ontological element may be accessed by a corresponding multidimensional

space address (coordinates) given via NL-word or phrase. Therefore, we have

two main constructs of the physical organizations of OntoArM – ontological

spaces and ontological elements.

In OntoArM the length of the ontological element (string) may vary from 0 up to

1G bytes. There is no limit for the number of strings in an archive but their total

length plus internal indexes could not exceed the limited length of the file

system for a single file (4G, 8G, etc.). There is no limit for the numbers of files in

the information base as well as for theirs dispositions.

OntoArm operations inherited from ArM32

The operations with basic information elements are:

 ArmRead (reading a part or a whole element);

 ArmWrite (writing a part or a whole element);

 ArmAppend (appending a string to an element);

 ArmInsert (inserting a string into an element);

 ArmCut (removing a part of an element);

 ArmReplace (replacing a part of an element);

 ArmDelete (deleting an element);

 ArmLength (returns the length of the element in bytes).

The operations over the spaces are:

 ArmDelSpace (deleting the space),

 ArmCopySpace and ArmMoveSpace (copying/moving the first space in the second in the
frame of one file),

 ArmExportSpace (copying one space from one file the other space, which is located in
other file).

International Journal “Information Theories and Applications”, Vol. 29, Number 4, © 2022

389

The operations, aimed to serve the navigation in the information spaces return

the space address of the next or previous, empty or non-empty elements of

the space starting from any given co-ordinates. They are ArmNextPresent,

ArmPrevPresent, ArmNextEmpty, and ArmPrevEmpty.

The projections’ operations return the space address of the next or previous

non-empty elements of the projection starting from any given co-ordinates.

They are ArmProjNext and ArmProjPrev.

The operations, which create indexes, are:

 ArmSpaceIndex – returns the space index of the non-empty structures in the given
information space;

 ArmProjIndex – gives the space index of basic information elements of a given projection

The service operations for counting non-empty elements or subspaces

are correspondingly:

 ArmSpaceCount – returns the number of the non-empty structures in given information
space;

 ArmProjCount – gives the number of elements of given (hierarchical or arbitrary)
projection.

OntoArm RDF graph oriented operations

Converting strings into space addresses

There are two internal operations for conversion:

- ArmStr2Addr – converts string to space address. Four ASCII symbols or two
UNICODE 16 symbols form one co-ordinate word. This reduces four, respectively –
two, times the space’ dimensions. The string is extended with leading zeroes if it is
needed.

- ArmAddr2Str – converts space address in ASCII or UNICODE string. The leading
zeroes are not included in the string.

The operations for conversion are not needed for the end-user because they

are used by the upper level operations given below. All OntoArM operations

access the information by NL-addresses (given by a NL-words or phrases).

Because of this we will not point specially this feature.

OntoArM operations for storing and receiving RDF information

There are two main operations for creating the RDF-store:

International Journal “Information Theories and Applications”, Vol. 29, Number 4, © 2022

390

- OntoArmWrite – writes a buffer (usually NL-string).
- OntoArmRead – reads a buffer (usually NL-string).

It is clear; to work easily with RDF graphs, several additional operations are

needed:

- OntoArmAppend (appending a string to an element);
- OntoArmInsert (inserting a string into an element);
- OntoArmCut (removing a part of an element);
- OntoArmReplace (replacing a part of an element);
- OntoArmDelete (deleting an element);
- OntoArmLength (returns the length of the element in bytes).
-

OntoArM operations for graph navigation

The operations, aimed to serve the navigation in the graph are context

depended – the format of the elements is important for the navigation. If the

element is an NL-index, the navigation operation may take its next or previous

NL-word for further processing. If the element has more complicated structure,

the navigation operations have to be accommodated to it. In general, these

operations are usual ones for navigating in the graph structures.

NL-Addressing for ontology generic schemas

Vertical representation

The simplest RDF generic schema is the triple store with only one table

required in the database. The table contains three columns named Subject,

Predicate and Object, thus reflecting the triple nature of RDF statements. This

corresponds to the vertical representation for storing objects in a table [Agrawal

et al, 2001].

The greatest advantage of this schema is that no restructuring is required if the

ontology changes. Adding new classes and properties to the ontology can be

realized by a simple INSERT command in the table. On the other hand,

performing a query means searching the whole database and queries involving

joins become very expensive. Another aspect is that the class hierarchy cannot

be modeled in this schema, what makes queries for all instances of a class

rather complex [Hertel et al, 2009].

International Journal “Information Theories and Applications”, Vol. 29, Number 4, © 2022

391

It is easy to store this schema via OntoArM. The Subject will be the address and

all its couples (Predicate, Object) may be stored at one and the same address.

This way with one operation all arcs of the node of the graph will be received.

There exists another variant of organization where the Predicate may be

additional co-ordinate or name of the archive. In this case, additional operations

for reading arcs will be needed. Nevertheless, in all cases the OntoArM will

have linear complexity O(max_L), where max_L is the maximal length of the

word or phrases, used for NL-addressing. In the same time, the relational table

has complexity at least O(n log n), where n is number of all indexed elements

(words), if we will take in account supporting indexing and binary search. Of

course, the memory for binary indexes exceeds the OntoArM memory for

internal indexes. At the end, the time for direct access is many times less then

via binary search. The speed experiments with Firebird relation data base had

showed about 30-ty times for reading and more than 90-ty times for writing in

ArM’s favor [Markov et al, 2008].

Normalized triple store

The triple store can be used in its pure form [Oldakowski et al, 2005], but most

existing systems add several modifications to improve performance or

maintainability. A common approach, the so-called normalized triple store, is

adding two further tables to store resource URIs and literals separately as

shown in Fig. 2, which requires significantly less storage space [Harris &

Gibbins, 2003]. Furthermore, a hybrid of the simple and the normalized triple

store can be used, allowing storing the values themselves either in the triple

table or in the resources table [Jena2, 2012].

Trilpes: Resources: Literals:

Subject Predicate IsLiteral Object

r1 r2 False r3

r1 r4 True l1

… … … …

ID URI

r1 …#1

r2 …#2

… …

ID Value

l1 Value1

… …

… …

Fig. 2. Normalized triple store

In a further refinement, the Triples table can be split horizontally into several

tables, each modeling an RDF(S) property:

― SubConcept for the rdfs:subClassOf property, storing the class hierarchy

International Journal “Information Theories and Applications”, Vol. 29, Number 4, © 2022

392

― SubProperty for the rdfs:subPropertyOf property, storing the property

hierarchy

― PropertyDomain for the rdfs:domain property, storing the domains and

cardinalities of properties

― PropertyRange for the rdfs:range property, storing the ranges of

properties

― ConceptInstances for the rdf:type property, storing class instances

― PropertyInstances for the rdf:type property, storing property instances

― AttributeInstances for the rdf:type property, storing instances of

properties with literal values

These tables only need two columns for Subject and Object. The table names

implicitly contain the predicates. This schema separates the ontology schema

from its instances, explicitly models class and property hierarchies and

distinguishes between class-valued and literal-valued properties [Broekstra,

2005; Gabel et al, 2004].

The normalized triple store is ready for representing via OntoArM. Only what we

have to do is to take in account the representing all arcs from a node by one

space NL-index and the representing all properties as an aggregate. The

Subject will be the NL-address and only Object will be saved. Possibility to

concatenate all Objects for a Subject reduces the size of memory and time.

There are different approaches for building the aggregate – using additional co-

ordinate to the Subjects’ values or to use separate archives for storing the

information.

In all cases, the OntoArM has linear complexity O(max_L), the relation data

base – at least O(n log n).

NL-Addressing for ontology specific schemas

Horizontal representation

Ontology specific schemas are changing when the ontology changes, i.e. when

classes or properties are added or removed. The basic schema consists of one

table with one column for the instance ID, one for the class name and one for

each property in the ontology. Thus, one row in the table corresponds to one

instance. This schema is corresponding to the horizontal representation

International Journal “Information Theories and Applications”, Vol. 29, Number 4, © 2022

393

[Agrawal et al, 2001] and obviously has several drawbacks: large number of

columns, high sparsity, inability to handle multi-valued properties and the need

to add columns to the table when adding new properties to the ontology, just to

name a few.

Horizontally splitting this schema results in the so called one-table-per class

schema - one table for each class in the ontology is created. A class table

provides columns for all properties whose domain contains this class. This is

tending to the classic entity-relationship-model in database design and benefits

queries about all attributes and properties of an instance.

However, in this form the schema still lacks the ability to handle multi-valued

properties, and properties that do not define an explicit domain must then be

included in each table. Furthermore, adding new properties to the ontology

again requires restructuring existing tables [Hertel et al, 2009].

The horizontal representation is an example of a set of aggregates in the sense

of OntoArM. Storing every class in a separate archive gives possibility to add

properties without restructuring existing tables because the aggregate may be

described by a meta-index. Again, NL-addressing in OntoArM has linear

complexity O(max_L), the relation data base representation – at least O(n log

n).

Decomposition storage model

Another approach is vertically splitting the schema, what results in the one-

table-per-property schema, also called the decomposition storage model.

In this schema one table for each property is created with only two columns for

Subject and Object. RDF(S) properties are also stored in such tables, e.g. the

table for rdf:type contains the relationships between instances and their classes.

This approach is reflecting the particular aspect of RDF that properties are not

defined inside a class. However, complex queries considering many properties

have to perform many joins, and queries for all instances of a class are similarly

expensive as in the generic triple schema [Hertel et al, 2009].

In practice, a hybrid schema combining the table-per-class and table-per

property schemas is used to benefit from the advantages of both of them. This

International Journal “Information Theories and Applications”, Vol. 29, Number 4, © 2022

394

schema contains one table for each class, only storing there a unique ID for the

specific instance. This replaces the modeling of the rdf:type property. For all

other properties tables are created as described in the table-per-property

approach (Fig. 3) [Pan & Heflin, 2004]. Thus, changes to the ontology do not

require changing existing tables, as adding a new class or property results in

creating a new table in the database.

ClassA: Property1: ClassB:

ID

…#1

…

Subject Object

…#1 …#3

… …

ID

…#3

…

Fig. 3. Hybrid schema

A possible modification of this schema is separating the ontology from the

instances. In this case, only instances are stored in the tables described above.

Information about the ontology schema is stored separately in four additional

tables Class, Property, SubClass and SubProperty [Alexaki et al, 2001]. These

tables can be further refined storing only the property ID in the Property table

and the domain and range of the property in own tables Domain and Range

[Broekstra, 2005]. This approach is similar to the refined generic schema, where

the ontology is stored the same way and only the storage of instances is

different.

To reduce the number of tables, single-valued properties with a literal as range

can be stored in the class tables. Adding new attributes would then require

changing existing tables. Another variation is to store all class instances in one

table called Instances. This is especially useful for ontologies where there is a

large number of classes with only few or no instances [Alexaki et al, 2001].

The decomposition storage model is memory and time consuming due to

duplicating the information and generation of too much binary search indexes. It

is very near to the OntoArM style and may be directly implemented using NL-

addressing but this will be not efficient. NL-addressing permits new possibilities

due to omitting of explicit given information – names as well as binary indexes.

The feature tables may be replaced by NL-addressing access to corresponded

points of the information space where all information about given Subject will

International Journal “Information Theories and Applications”, Vol. 29, Number 4, © 2022

395

exist. This way we will reduce the needed memory and time. At the end, let

point again, that NL-addressing has linear complexity O(max_L) and the relation

data base representation – at least O(n log n).

Conclusion

NL-addressing is a possibility to access information using natural language

words as addresses of the information stored in the multi-dimensional

numbered information spaces. For this purpose the internal encoding of the

letters is used to generate corresponded co-ordinates. The tool for working in

such style is named OntoArM. Its main principles, functions and using for

storing RDF graph were outlined in this paper.

There are further issues not pointed above, which may require an extension of

the triple-based schemas and thus are affecting the design of the database: (1)

Storing multiple ontologies in one database; (2) Storing statements from

multiple documents in one database.

Both points are concerning the aspect of provenance, which means keeping

track of the source an RDF statement is coming from. When storing multiple

ontologies in one database it should be considered that classes, and

consequently the corresponding tables, can have the same name. Therefore,

either the tables have to be named with a prefix referring to the source ontology

[Pan & Heflin, 2004] or this reference is stored in an additional attribute for

every statement. A similar situation arises for storing multiple documents in one

database. Especially, when there are contradicting statements it is important to

know the source of each statement. Again, an additional attribute denoting the

source document helps solving the problem [Pan & Heflin, 2004].

The concept of named graphs [Caroll et al, 2004] is including both issues. The

main idea is that each document or ontology is modeled as a graph with a

distinct name, mostly a URI. This name is stored as an additional attribute, thus

extending RDF statements from triples to so-called quads. For the database

schemas described above this means adding a fourth column to the tables and

potentially storing the names of all graphs in a further table.

International Journal “Information Theories and Applications”, Vol. 29, Number 4, © 2022

396

All these problems can be solved by OntoArM, because a separated ontology

may be represented in one single archive. In addition, the NL-addressing

permits accessing the equal names in different ontologies without any additional

indexing or using of pointers, identification and etc. Only the NL-words or

phrases are enough to access all information in all existing ontologies (resp.

graphs).

The linear complexity O(max_L) of NL-addressing is very important for realizing

very large triple stores.

OntoArM is implemented in the Institute of Cybernetics V.M. Glushkov at the

National Academy of Sciences of Ukraine, Kiev (IC NASU). It has been used for

storing ontology information about multiple documents from own data bases as

well as from different internet sources.

The further work is concerned to implementing OntoArM for storing multiple

ontologies in the libraries of the “Instrumental Complex with Ontological

Purpose”, which is under developing in the IC NASU.

Acknowledgements

The paper is partially financed by the project ITHEA XXI of the Institute of

Information Theories and Applications FOI ITHEA and the Consortium FOI

Bulgaria (www.ithea.org, www.foibg.com).

Bibliography

[Agrawal et al, 2001] Agrawal R, Somani A, Xu Y Storage and querying of e-

commerce data. In: Proceedings of the 27th Conference on Very Large Data

Bases, VLDB 2001,Roma, Italy.

[Alexaki et al, 2001] Alexaki S, Christophides V, Karvounarakis G, Plexousakis

D, Tolle K (2001) The ICS-FORTH RDFSuite: Managing voluminous RDF

description bases. In: Proceedings of the 2nd International Workshop on the

Semantic Web, Hongkong.

[Broekstra, 2005] Broekstra J. Storage, querying and inferencing for Semantic

Web languages. PhD Thesis, Vrije Universiteit, Amsterdam (2005).

[Caroll et al, 2004] Caroll J, Bizer C, Hayes P, Stickler P (2004) Semantic Web

publishing using named graphs. In: Proceedings of Workshop on Trust,

International Journal “Information Theories and Applications”, Vol. 29, Number 4, © 2022

397

Security, and Reputation on the SemanticWeb, at the 3rd International

SemanticWeb Conference, ISWC 2004, Hiroshima, Japan.

[Codd, 1970] Codd, E.: A relation model of data for large shared data banks.

Magazine Communications of the ACM, 13/6, 1970, pp.377 387.

[Gabel et al, 2004] Gabel T, Sure Y, Voelker J (2004) KAON – An overview.

Insititute AIFB, University of Karlsruhe. http://kaon.semanticweb.org/main

kaonOverview.pdf.

[Harris & Gibbins, 2003] Harris S, Gibbins N 3store: Efficient bulk RDF storage.

In: Proceedings of the 1st International Workshop on Practical and Scalable

Semantic Systems, PSSS 2003, Sanibel Island, FL, USA.

[Hayes, 2004] Patrick Hayes, Editor, RDF Semantics, W3C Recommendation,

10 February 2004, http://www.w3.org/TR/2004/REC-rdf-mt-20040210/ . Latest version

available at http://www.w3.org/TR/rdf-mt/ .

[Hertel et al, 2009] Alice Hertel, Jeen Broekstra, and Heiner Stuckenschmidt.

RDF Storage and Retrieval Systems. In: S. Staab and R. Studer (eds.),

Handbook on Ontologies, International Handbooks on Information Systems,

DOI 10.1007/978-3-540-92673-3, Springer-Verlag Berlin Heidelberg 2009. pp

489-508.

[Jena2, 2012] Jena2 database interface – database layout.

http://jena.sourceforge.net/DB/layout.html. (visited at 22.08.2012)

[Klyne & Carroll, 2004] Graham Klyne and Jeremy J. Carroll, Editors, Resource

Description Framework (RDF): Concepts and Abstract Syntax, W3C

Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-rdf-concepts-

20040210/ . Latest version available at http://www.w3.org/TR/rdf-concepts/ .

[Markov et al, 2008] Markov K, Ivanova, K., Mitov, I., & Karastanev, S. Advance

of the access methods. Int. J. Information Technologies and Knowledge, 2/2,

2008, pp.123-135

[Markov, 1984] Кr.Markov. А Multi-domain Access Method. // Proceedings of the

International Conference on Computer Based Scientific Research. Plovdiv,

1984. pp. 558-563.

[Markov, 2004] Markov, K. Multi-domain information model. Int. J. Information

Theories and Applications, 11/4, 2004, pp.303-308.

[Mitov et al, 2009] Mitov, I., Ivanova, K., Markov, K., Velychko, V., Vanhoof. K.,

Stanchev, P. "PaGaNe" – A classification machine learning system based on

http://kaon.semanticweb.org/main%20kaonOverview.pdf
http://kaon.semanticweb.org/main%20kaonOverview.pdf
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://www.w3.org/TR/rdf-mt/
http://jena.sourceforge.net/DB/layout.html
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/rdf-concepts/

International Journal “Information Theories and Applications”, Vol. 29, Number 4, © 2022

398

the multidimensional numbered information spaces. In World Scientific Proc.

Series on Computer Engineering and Information Science, No.2, pp.279 286.

[Oldakowski et al, 2005] Oldakowski R, Bizer C, Westphal D RAP: RDF API for

PHP. In: Proceedings of Workshop on Scripting for the Semantic Web,

SFSW 2005, at 2nd European Semantic Web Conference, ESWC 2005,

Heraklion, Greece.

[Pan & Heflin, 2004] Pan Z, Heflin J (2004) DLDB: Extending relational

databases to support Semantic Web queries. Technical Report LU-CSE-04-

006, Department of Computer Science and Engineering, Lehigh University.

Authors' Information

Krassimira Ivanova – University of National and World Economy,
Sofia, Bulgaria
e-mail: krasy78@mail.bg
Major Fields of Scientific Research: Data Mining

Vitalii Velychko – Institute of Cybernetics, NASU, Kiev, Ukraine
e-mail: Velychko@rambler.ru
Major Fields of Scientific Research: Data Mining, Natural
Language Processing

Krassimir Markov – Institute of Mathematics and Informatics at
BAS, Sofia, Bulgaria;
e-mail: markov@foibg.com
Major Fields of Scientific Research: Multi-dimensional information
systems, Data Mining

mailto:krasy78@mail.bg
mailto:Velychko@rambler.ru
mailto:markov@foibg.com

