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Abstract: This work is aimed at understanding the applied value of the 

mathematical problem of discrete tomography. Tomography, in general, is 

about the reconstructing of objects by sets of observable properties. 

Theoretically this is a typical inverse problem of combinatorial analysis. In 

applied level, in addition to the well-known task of tests and testing from the 

electrical engineering, complementary tasks of biomedical nature are 

considered. An example of the second task which is about treating sets of 

biological linear specimens with combinations from a limited resource of drugs 

(antibiotics) is considered aiming at achieving as many different treatment 

courses as possible to take place.  
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1 Introduction 

Problems where the object is given and it is necessary to calculate its 

characteristics - are called direct/forward problems, in contrast to the inverse 

problems in which the objectt is not available, and it is necessary to recover it 

based on a partial information, which is often given by measurements 

([Heuberger, 2014], [DemangeMonnot, 2013]. 

Thus, inverse problems are a class of mathematical problems that arise when it 

is required to obtain information on internal or hidden data through 

external/available measurements. Inverse problems as a rule are ill-posed. 
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According to the Hadamar’s definition [Hadamard, 1902], a problem should 

have the following three properties to be considered as “well-posed”: 

1. For all admissible data a solution exists, 

2. For all admissible data the solution is unique, 

3. The solution depends continuously on the data. 

Problems that violate any of the three properties are "ill-posed". In the inverse 

problems the third condition is mainly violated, often referred to as a stability 

condition.  

Tomography is a set of inverse problems about the reconstruction of an 

unknown object by means of partial data coming from its projections collected 

by means of X-rays, and taken along given directions. Typically, physical 

structures have a large variety of density values, and therefore a large number 

of X-rays are needed to recover the density distribution. In some cases, the 

object has a small number of density values (or the required number of 

directions, along which projections are taken is very limited in order to avoid 

physical damaging the objects) and thus a small number of X-rays is used. 

Discrete tomography is a domain to deal with these cases. In recent years, 

discrete tomography has been of research interest because of its mathematical 

formulation and the variety of applications. Discrete tomography is widely used, 

particularly in the processing of medical images. Applications are also related to 

the reconstruction of crystalline structures that are accessible only through 

some images provided by high-resolution transmission electron microscopy, 

and others ([SlumpGerbrands, 1982], [PrauseOnnasch, 1996], [IrvingJerrum, 

1994], [Jinschek et al, 2004], [Kisieloski et al, 1995]. 

Discrete tomography, in the simplest case, considers an object ܶ, which is a set 

of cells of the ݊-dimensional integer lattice ܼ. A projection of ܶ in any direction 

calculates the number of points of ܶ  on the lines parallel to the projection 

direction. Given a set {݀ଵ, ݀ଶ,⋯ , ݀}  of lattice directions and projections ଵܲ, ଶܲ, ⋯ , ܲ  along those directions. Consider Consistency and Reconstruction 

problems in Discrete Tomography. 

Consistency: Does there exist a discrete set ܶ ∈ ܼ  with given projections ଵܲ, ଶܲ, ⋯ , ܲ in lattice directions ݀ଵ, ݀ଶ,⋯ , ݀? 
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Reconstruction: Construct a discrete object ܶ	 ∈ ܼ  from its projections ଵܲ, ଶܲ, ⋯ , ܲ. 
These are NP-hard problems for ݊ ≥ 2, and ݈	 ≥ 3 non-parallel projections in the 

integer lattice ܼ ([GardGrizmPran, 1999]).  

Due to the complexity of the problem, a special attention has been given to the 

2-dimensional case. Subsets of ܼଶ can be presented as binary images or binary 

matrices, where the 1s determine the cells of ܶ . Various researches are 

devoted to the case of orthogonal projections: horizontal and vertical. In terms 

of binary matrices, the row sum corresponds to the horizontal projection of ܶ, 

and the column sum corresponds to the vertical projection. In the case with only 

horizontal and vertical projections the problem has polynomial complexity, but 

the number of solutions can be large. Any prior knowledge /constraint/ about the 

image to be reconstructed, can reduce the search space of possible solutions. 

The existence problem under different geometrical constraints /convexity, 

connectivity/ is investigated by various authors (R.Gardner, P.Gritzmann, A.Del 

Lungo, E.Barcucci, M.Nivat, R.Pinzani, G.Woeginger, and others, 

[GardnerGritzmann, 1999], [Barcucci et al, 1996], [Woeginger, 2001]); for some 

cases the NP-completeness is proved, some particular cases can be solved by 

polynomial algorithms, but there also exist open problems in terms of 

complexity. 

Summarizing, discrete tomography consistency and reconstruction problems 

can be presented through the model of weighted binary matrices (rows’ weights 

correspond to the horizontal projection and columns’ weights correspond to the 

vertical projections). The matrix model brings its own constraints, and one of 

them is the requirement of non-repetitiveness of the matrix rows. This constraint 

naturally appears in a number of applications; one of them is the design of 

experiments (DOE). 

In this paper we consider a DOE problem with limited resources with examples 

from the biomedical field. 

Firstly we compare the binary matrix model of this problem with a known 

mathematical problem of minimum test collections (MTC) on binary tables 

([YablonskiiChegis, 1955], [ChegisYablonskii, 1958], [Solov'ev, 1978], [Dmitriev 
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et al, 1966]). MTC is one of the basic NP-complete problems ([Karp, 1972], 

[GareyJonson, 1979]). The basic reference to MTC is “unpublished papers” by 

M. Garey and D. Jonson (see [GareyJonson, 1979]) but much earlier S. 

Yablonskii and I. Chegis investigated the problem in detail. An effective 

machine learning application was the work [Zhuravlev et al, 1966] by Yu. 

Zhuravlev et al. The input of the problem is a (0,1) table of a given size ݉ × ݊ 

with different rows. It is necessary to find subsets and, if possible, minimal size 

subsets of columns by which the rows still remind different. Usually the 

interpretation of this problem is given in terms of the electrical engineering. 

There are observable characteristics of electrical equipment (qualitative or 

quantitative), corresponding to the columns of the matrix. Matrix rows 

correspond to individual equipment that are physically in various malfunctioning 

states. The problem examines at first stage such sets of observable 

characteristics, by which the given ݉ states (rows) differ one from the other 

(forming the initial input table), and then, the goal is to minimize the sets of 

columns by removing from it one or another group of observations keeping the 

rows different. 

What is the similarity and difference between the two considered problems – the 

minimum test sets and the planning of a large number of different experiments 

with limited resources. The first task is a real optimization problem about 

physical objects and their properties. The second task relates to virtual reality - 

it asks about the reality of the plan of experiments, which are many, and which 

are based on the framework of the available resources. 

Consider another comparison of the two mentioned problems on matrices with 

different rows. In MTC the matrix is given so that all rows and all columns are 

given beforehand. We just try to find proper row fragments composed by 

minimal number of columns keeping all rows different. In DOE with resource 

limitation what is given is the column weight vector. The general idea is in 

organizing as much as possible different and informative experiments, with an 

effective use of given limited resource of the problem.  

Summarizing, the use of the binary matrix model for the considered DOE 

problem with limited resources makes it possible to apply known approaches 
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and algorithms developed for the construction of binary matrices with given 

projections and given constraints.  

As an example, a greedy algorithm, developed in [Sahakyan, 2010], 

[SahakyanAslanyan, 2011] is adjusted/modified and applied in the design of 

biomedical experiments with limited resources. 

The paper is organized as follows: below in Chapter 2 the DOE problem is 

introduced and modeled in terms of binary matrices. Chapter 3 brings a brief 

description of the greedy approximation algorithm developed in [Sahakyan, 

2010], [SahakyanAslanyan, 2011] for constructing binary matrices with different 

rows. Chapter 4 introduces some modifications of the algorithm. 

 

2 Problem Definition 

Design of experiments (DOE) is a research domain ([Fisher], [Bose, 1939], 

[Rao, 1996], which helps in assigning treatments to the experimental units in a 

way of optimizing several characteristics of experiments such as the evaluated 

output value dispersion, or the computational complexity, etc. Combinatorial 

block design ([BhattacharyaSinghi, 2013], [Beth et al, 1985], [ColbournDinitz, 

2006], one of the constituents of the DOE theory, combines units into 

homogeneous groups to achieve the goal of the DOE.  

Consider the following medical-biological DOE problem. 

Multidrug resistance problem is well known in biomedicine. According to the 

WHO (World Health Organization), most pathogenic species in existence today 

have developed resistance to one or more antimicrobials. E.g., the multidrug 

resistance of Escherichia coli (an essential component of the digestive tract 

flora of healthy humans and even most animals) has increased from 7.2% 

during the 1950s to 63.6% during the 2000s. One of the ways of combating 

multidrug resistance is the use of antibiotic combinations (cocktail) [Hickman, 

2011]. 

Suppose that for a biomedical experiment, performed to gain a practical 

knowledge of antibiotic combinations, there are ݊ antibiotics of different type 
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given in limited quantities/portions. A cocktail combines portions of several of 

the given ݊ antibiotics. Let, for the ݅-th antibiotic ݏ portions only of the drug are 

given (݅ = 1, ⋯ , ݊).  

The problem is the following: design/plan experiments, which means creation of 

given number of different cocktails so that they use the whole available drug 

store ݏଵ, ⋯,ଶݏ ,   .ݏ

It is possible to describe very large number of similar DOE scenarios. From 

technical point of view it is important to mention that the resources ݏଵ, ⋯,ଶݏ ,  ݏ

are for single use. If they describe not drugs but bacteria, then these are not 

cultivated. 

In addition to this it is specifically important to mention that the non-repetition of 

experiments is a natural and valid requirement of the experimental design in 

these cases. 

Let us also mention that each cocktail has its experimental value and that we do 

not consider general or economic optimization issues. 

The scope of the problem solutions can be wide, but we are interested in: 

― Finding/composing one of the solutions, because it clarifies the possibility 

of planning experiments with given quantities of antibiotics (otherwise, 

the composition of available samples should be changed); 

― Composing a solution, which involves as much as possible different 

cocktails with given quantities of antibiotics. 

 

Thus, the problem can be formulated in the following way:  ࢇ࢚ࢉ_࢙ࢉ࢚࢈࢚ _)  ): Given ݊  antibiotics of limited ݏଵ, ⋯,ଶݏ ,  ݏ

quantities, correspondingly. 

(1) Decide whether it is possible to design an experiment with the given 

number ݉  of different cocktails (subset, combination) so that ݏଵ, ⋯,ଶݏ ,  ; quantities are usedݏ

(2) Compose as much as possible different cocktails using ݏଵ, ⋯,ଶݏ ,  ݏ

quantities of antibiotics. 
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Each cocktail can be presented by a binary vector of length ݊ such that the ݆-th 

component of the vector is 1 if and only if the ݆-th antibiotic is used in the 

cocktail. In this manner an experiment ܧ with ݉ different cocktails corresponds 

to a binary matrix ܣ = {ܽ,} with ݉ rows and ݊ columns; the number of 1s in the ݆ -th column of ܣ  is equal to the quantity of the ݆ -th antibiotic used in the 

experiment; the number of 1s in the ݅ -th row of ܣ  equals the number of 

antibiotics used in the ݅-th cocktail. 

 

The problem in terms of binary matrices has the following formulation. 

Existence of binary matrices with given column sum and with different 

rows (ࡰ_ࡿ): Given non-negative integer vector ܵ = ,ଵݏ) ⋯,ଶݏ ,  ) and a naturalݏ

number ݉. 

(1) Decide whether there is a binary matrix ܣ = {ܽ,} of size ݉ × ݊ with all 

different rows and with the column sum vector ܵ = ,ଵݏ) ⋯,ଶݏ ,  ;(ݏ
(2) Compose a binary matrix with the column sum ܵ = ,ଵݏ) ⋯,ଶݏ ,  ) and withݏ

maximum possible number of different rows. 

 

Thus _ is reduced to the combinatorial problem	ࡰ_ࡿ, which is known as a 

hard computational problem.  

 

In the process of seeking efficient approximate solutions a greedy heuristics is 

investigated and an algorithm is developed in [Sahakyan, 2010], 

[SahakyanAslanyan, 2011] for constructing binary matrices with given column 

sums and with different rows. In the next sections we briefly introduce the 

algorithm, and also mention some peculiarities of the ࢇ࢚ࢉ_࢙ࢉ࢚࢈࢚ 
problem and the algorithm itself, which makes it expedient using the algorithm 

for this problem. 
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3 Optimization Version and Approximation Algorithm 

For a given non-negative integer vector ܵ = ,ଵݏ) ⋯,ଶݏ ,  ) let ܷ(ܵ) denote theݏ

class of binary matrices of size ݉ × ݊ , which have the column sum vector ܵ = ,ଵݏ) ⋯,ଶݏ ,   .(ݏ
For a matrix ܣ of ܷ(ܵ) let (ܣ)ܲܦ denote the number of disjoint pairs of rows of ܣ; Obviously, 0 ≤ (ܣ)ܲܦ ≤ ଶܥ , and (ܣ)ܲܦ = ଶܥ  if and only if the rows of ܣ are 

different.  

Now we consider the following optimization version of ࡰ_ࡿ  (1) with the 

objective function	ܲܦ. 

௧ܣ find :(࢚ܦ_ࡿ)  ∈ ܷ(ܵ) such that ܲܦ൫ܣ௧൯ =  .(ܣ)ܲܦ∈(ௌ)ݔܽ݉
It is clear that any solution of (ܦ_ܵܥ௧) is also a solution for ܦ_ܵܥ	for the cases 

when ܷ(ܵ) contains also matrices with different rows. 

Now we bring a brief description of the algorithm ܩ  introduced in 

[SahakyanAslanyan, 2011], [Sahakyan, 2010]. 

 

Algorithm ࡳ for the problem ࢚ࡰ_ࡿ  
Input: non-negative integer vector ܵ = ⋯,ଵݏ) ,  .݉ ) and natural numberݏ

The algorithm ܩ constructs a binary matrix ீܣ, of size ݉ × ݊ in the column-by-

column manner, putting ݏ 1s in the ݅-th column (݅ = 1,⋯ , ݊) having the goal to 

maximize the increase of the objective function (the number of disjoint pairs of 

rows) in each step. 

Step 1. Construction of the first column: put 1s in the first ݏଵ rows and put 0s in 

the remaining ݉ − ଵݏ ଵ rows. In the first column we get an interval of 1s of lengthݏ  (i.e. ݏଵ  consecutive 1s) and an interval of 0s of length ݉ − ଵݏ  (݉ −  ଵݏ
consecutive 0s). Then, the number of different pairs of rows after the 

construction of the first column will be equal to ݏଵ ∙ (݉ −  ଵ). We notice that anyݏ

other distribution of ݏଵ 1s and ݉ −  ଵ 0s in the first column would produce theݏ

same number of different pairs of rows. 
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In each next step the algorithm splits every interval of the previous step 

(column) into two parts, and puts 1s in one of them, and 0s in the other, such 

that the summary number of 1s equals the corresponding component of the 

column sum vector  ܵ = ⋯,ଵݏ) ,    .(ݏ
Suppose that the first (݇ − 1) columns of the matrix are constructed, and let the (݇ − 1) -th column consists of   intervals of non-zero lengths, denoted by: ݀ିଵ,ଵீ , ݀ିଵ,ଶீ ,⋯ , ݀ିଵ,ீ . 

 

Step . Construction of the ݇-th column: for ݅ = 1,⋯ , split the ݀ିଵ,ீ , -length 

interval into two parts, -denoting them by  ݀ିଵ,,ீ  and ݀ିଵ,,ଵீ , - and put 0s and 

1s respectively, such that:  ∑ ݀ିଵ,,ீୀଵ = ݉ − ∑ , ݏ ݀ିଵ,,ଵீୀଵ =  .ݏ

Then the increase of the objective function will be equal to: and ∑ ݀ିଵ,,ଵீୀଵ ∙݀ିଵ,,ீ  . 

 

All rows of the matrix will be different if and only if the last column of the matrix 

consists of only one-length intervals. 

 

The detailed description of the algorithm ܩ and the proof of its local optimality 

(the maximal increase of the objective function is achieved in each step) is 

given in [Sahakyan, 2010]; and its performance guarantee is estimated in 

[Sahakyan, 2017]. On the other hand, experimental results given in 

[SahakyanAslanyan, 2011] (algorithm run for all binary matrices with ݊ ≤ 6 

columns and with ݉, ݉ = 1,2,⋯ , 2 rows) show that the constructed matrices in 

the last column can have at most 2-length intervals; moreover in most cases 

there is only one 2-length interval in the last column (and for small values of ݉ 

(݉ ≤ 11), all rows are different), which means that constructed matrices in most 

cases contain at most 1 pair of coinciding rows.  
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4 Modified Algorithm for the Problem “Antibiotics Cocktail” 

In the experiments, which are related to the design of antibiotic combinations 

the general idea is in organizing as much as possible different and informative 

experiments (*), with an effective use (**) of the given limited resource of the 

problem. Combining (*) and (**) we define 2 simple strategies. The first is direct 

maximization of the number of experiments; and the second, focused on 

effective use of the problem resources, can be formulated as high column 

weights, i.e. every antibiotic is used at least in certain part of antibiotic 

combinations. In “Antibiotics Cocktail” problem we will assume that  ݏ ≥ ଶ , ݅ =1,⋯ , ݊ , that is every antibiotic is used at least in the half of antibiotic 

combinations. 

 

Now we apply algorithm ܩ to (_) ࢇ࢚ࢉ_࢙ࢉ࢚࢈࢚ problem:  

(1) Decide whether it is possible to design an experiment with given number 

of different cocktails such that ݏଵ, ⋯,ଶݏ , ݏ  quantities of antibiotics are 
used.  

 

It is worth mentioning that with the supposition ݏ ≥ ଶ , the algorithm ܩ  can 

organize the splitting of intervals (in each column of the constructed matrix ீܣ,) 

in such a way that the resulting matrix contains a row consisting of all 1s. It 

follows that in the case when ீܣ, contains coinciding rows, at least two of them 

will be consisting of all 1s. Thus, ீܣ, will contain either: 

a) at most two coinciding rows (coinciding combinations of antibiotics, 
where each of them contains all types of antibiotics); or 

b) more than two coinciding rows/combinations.  

 

In the Case a) if all ݉	rows of the matrix  ீܣ,  are different, then ீܣ,  is the 

required solution. Otherwise, ீܣ,  contains one pair of coinciding rows 

consisting of all 1s (this can be either due to the non-optimality of the algorithm ܩ , or non-possibility to design ݉  different experiments with ݏଵ, ⋯,ଶݏ ,  ݏ
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quantities. We remove one of the coinciding rows, and output the matrix with ݉ − 1 rows and with the adjusted column sum vector (ݏଵ − 1,⋯ , ݏ − 1) (one 

amount of every antibiotic will remain unused). 

In the Case b) we may assume that it is not possible to design ݉ different 

experiments with ݏଵ, ⋯,ଶݏ , ݏ  quantities; however the constructed matrix  ீܣ, 

provides a guaranteed number of pairs of different combinations of antibiotics 

(related to the optimal number). 

Before considering part 2 of the problem, we formulate and prove the following 

lemma. 

 

Lemma   

Let ܣ be a binary matrix of size ݉ × ݊ with all different rows and with the 

column sum vector     ܵ = ,ଵݏ) ⋯,ଶݏ , ݏ ), whereݏ ≥ ݉/2 for ݅ = 1,⋯ , ݊, 

and ݏ > ݉/2 for some ݆, 1 ≤ ݆ ≤ ݊. Then, there exists a binary matrix of 

size (݉ + 1) × ݊ with all different rows and with the same column sum 

vector ܵ = ,ଵݏ) ⋯,ଶݏ ,  .(ݏ
Proof. ݏ > ݉/2 implies that ܣ  contains a row (let it be the ݅-th row) with 1 in the ݆-th 

position such that ܣ does not contain the row differing from the ݅-th only by the ݆ -th position, i.e. (ܽ,ଵ, ⋯ , ܽ,ିଵ, 1, ܽ,ାଵ,⋯ , ܽ,) ∈ ܣ , and 

(ܽ,ଵ,⋯ , ܽ,ିଵ, 0, ܽ,ାଵ,⋯ , ܽ,) ∉ ⋯,We append (ܽ,ଵ  .ܣ , ܽ,ିଵ, 0, ܽ,ାଵ,⋯ , ܽ,) to 

the matrix ܣ (it will not cause row repetitions). The resulting matrix will have ݉ + 1  different rows and a column sum vector (ݏଵᇱ , ଶᇱݏ ,⋯ , ିଵᇱݏ , ,ݏ ାଵᇱݏ ,⋯ , ᇱݏ ) , 

where ݏᇱ ≥ ݇  forݏ = 1,⋯ , ݊, ݇ ≠ ݆.  
Now we will modify ܣ into a binary matrix ܣᇱ of size (݉ + 1) × ݊ with all different 

rows and with the column sum vector ܵ = ,ଵݏ) ⋯,ଶݏ ,  .(ݏ
Suppose that ݏᇱ > ᇱݏ ,  for some ݇ (in factݏ = ݏ + 1), then ݏᇱ > ݉/2. It follows 

that there exists a row in ܣ (let it be the ݐ-th row) with 1 in the ݆-th position: (ܽ௧,ଵ,⋯ , ܽ௧,ିଵ, 1, ܽ௧,ାଵ,⋯ , ܽ௧,) ∈   ,ܣ
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such that (ܽ௧,ଵ,⋯ , ܽ௧,ିଵ, 0, ܽ௧,ାଵ,⋯ , ܽ௧,) ∉ ܣ . We replace (ܽ௧,ଵ,⋯ , ܽ௧,ିଵ, 1, ܽ௧,ାଵ,⋯ , ܽ௧,)  with (ܽ௧,ଵ,⋯ , ܽ௧,ିଵ, 0, ܽ௧,ାଵ,⋯ , ܽ௧,) ; this will 

decrease ݏᇱ  by 1 and will not cause row repetitions.  

By the same reasoning we make relevant row replacements for all ݏᇱ >  □ .ݏ

 :problem (part 2) (_) ࢇ࢚ࢉ_࢙ࢉ࢚࢈࢚ 

(2) Suppose that it is possible to design ݉ different cocktails with ݏଵ, ⋯,ଶݏ ,  ݏ
quantities of antibiotics; compose maximum possible number of different 
cocktails using the same quantities of antibiotics. 

Firstly, we apply algorithm ܩ and get as a result a binary matrix ܣ (possibly with 

a small number repeated rows, which are further removed, and the column sum 

vector and the number of rows are adjusted) of size ݉ × ݊ with all different rows 

and with the column sum vector ܵ = ,ଵݏ) ⋯,ଶݏ ,  .(ݏ
Now we introduce an algorithm ܯ that increases the number of rows keeping 

the same column sum vector ܵ.  

 

Algorithm ࡹ.  

Input: matrix ܣ of size ݉ × ݊ with all different rows and with the column sum 

vector ܵ = ,ଵݏ) ⋯,ଶݏ , ᇱܣ ;(ݏ ≔ ᇱ݉ ; ܣ ≔ ݉ ; ܵᇱ: = S; 
While ( ᇱܣ	  satisfies the Lemma conditions (all ݏ′ ≥ ݉ᇱ/2 and ݏ′ > ݉ᇱ/2  for 

some ݆) ) 
 {  

find a row (according to the Lemma), and append it to ܣᇱ; ݉ᇱ ≔ ݉ᇱ + 1; 

  calculate new column sum vector ܵᇱ = ଵᇱݏ) , ଶᇱݏ ,⋯ ,  ;ᇱܣ ) ofݏ
While ( ݏᇱ >  ( ݇  for someݏ

{ 
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find and make appropriate row replacements in ܣᇱ (according to 

the proof of the Lemma), 

calculate new column sum vector ܵᇱ = ଵᇱݏ) , ଶᇱݏ ,⋯ ,  ;ᇱܣ ) ofݏ
} 

}. 

Output: the matrix ܣᇱ of size ݉ᇱ × ݊ with all different rows and with the column 

sum vector ܵ = ,ଵݏ) ⋯,ଶݏ , ), where ݉ᇱݏ > ݉. 

    

Conclusion 

A DOE problem with limited resources from the biomedical field is modeled by 

binary matrices as a discrete tomography problem with the constraint of non-

repetitive rows. The problem is hard computationally, and in the process of 

seeking efficient approximate solutions, a known greedy algorithm developed 

for the construction of binary matrices with given projections and with all 

different rows, is adjusted/modified and applied to solve the problem. 
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