
International Journal “Information Theories and Applications”, Vol. 18, Number 4, 2011

358

OPTIMIZING PROGRAMMABLE LOGIC ARRAYS USING THE SIMULATED
ANNEALING ALGORITHM

Liudmila Cheremisinova, Irina Loginova

Abstract: In the paper the programmable logic array (PLA) topological optimization problem is dealt with using

folding techniques. A PLA folding algorithm based on the method of simulated annealing is presented. A

simulated-annealing PLA folding algorithm is presented for multiple unconstrained folding. Then, the algorithm is

extended to handle constrained folding. In this way, simple folding is considered as a case of multiple constrained

folding. Some experimental results of computer investigation of the suggested algorithms are given.

Keywords: design automation, area optimization, VLSI structure folding, simulated annealing.

ACM Classification Keywords: B.6.3 [Logic Design]: Design Aids – Optimization; B.7.2 [Integrated circuits]:

Design Aids –Layout.

Introduction

Structured logic refers to logic forms that exhibit a high degree of regularity in their layout and interconnections.
Such layout is referred to a regular layout style that is constructed according to some definite architecture and
established in advance for some structured logic. Typical widely used regular structures are Programmable Logic
Arrays (PLA’s), gate matrix arrays, Weinberger Arrays [Ullman, 1984]. All these forms have a two-dimensional
structure consisting of a matrix of rows and columns. There are transistors in intersections of some rows and
columns. The use of such regular structures makes it possible to automatically generate the layout from its
functional description. The price paid for the structural regularity is a larger chip area because the layouts
obtained are sparse: a large percentage of the row-column intersections are not personalized. In order one to
have a clear idea of degree of structural rarity, it can be said that previous research has shown that on average,
about half of the entries in the personality matrices of large structures in real circuits are not personalized.
Several techniques have been proposed for reducing the area required.

Since matrix is the central part of any regular structure mentioned above, we consider further just it and then we
show how to expand the obtained results to real regular structures taking into account the peculiarities of their
layout and some other constraints resulted from the implementation circuit on the base of these array structures
and the chosen type of topological minimization.

International Journal “Information Theories and Applications”, Vol. 18, Number 4, 2011

359

Techniques of topological minimization reduce the number of physical columns and/or rows, they change the PLA
structure by using a procedure called folding [Hachtel, 1982], [DeMicheli, 1983]. Folding is a technology-
independent transformation, it is developed for array structures and attempts to place two or more columns
(and/or rows) together in the same physical vertical (and/or horizontal) line (signal bus) so that they can share this
line. Column folding is said to be simple if utmost two columns (rows) share a single physical vertical (and/or
horizontal) line. It is called multiple if more than two columns can share a single column.

Folding does not change the implemented logic in any manner, but reduces the number of columns (and/or rows),
and thus reduces the area. In the paper we deal with array structure folding and its effects on its square.

[Wong, 88] proposes the use of simulated-annealing to solve the PLA folding problem for the case of multiple
unconstrained folding. In this approach, entire solutions are analyzed one after another by producing different
permutations of rows. In the paper we also propose the solution of multiple unconstrained and constrained folding
problem and extend the suggested simulated-annealing algorithm to solve a special case of multiple constrained
folding – simple folding. Then we give some experimental results of computer investigations of the suggested
simulated-annealing algorithms based on simple and multiple PLA folding and comparative evaluation of their
effects on PLA layout reduction.

Array structures style and their folding

Any array structure can be represented by specifying the positions of of their elements (transistors) in its plane. In
the folding problem it can be described in symbolic form by a Boolean matrix B having sets C(B) and R(B) of their
columns (where uncomplemented and complemented modes of a variable have their own distinct column) and
rows. A 1 in the position i,j of the matrix B means that there is an appropriate crosspoint (transistor) between the

i-row and the j-column in the matrix. Each column ci ∈ C(B) implies a set R(ci) ⊆ R(B) of rows, which are

populated on it: rj ∈ R(ci) ↔ bji = 1. For instance, for PLA on Figure 1 Boolean matrix B corresponding to AND-
plane is depicted in Figure 2.

a) b)

Figure 1. An example of array-based structure: a) PLA; b) PLA multiple folded form

x1 x2 x3 x4 x5 x6 x7 y1
y2

y3
y4

y5
y6

y7

r1
r2
r3
r4
r5
r6
r7
r8

r5

r6

r1

r3
r8

r7

r4

r2

y2

y4

y1

y3

y5

y7

y6

x6
x4

x1 x3

x3

x2

x7 x5 x1

x2

x7

x5

x4

International Journal “Information Theories and Applications”, Vol. 18, Number 4, 2011

360

 x1 x1 x2 x2 x3 x3 x4 x4 x5 x5 x6 x6 x7 x7
 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14
r1 1 0 0 0 0 1 0 0 0 0 0 0 0 0
r2 0 0 0 0 0 0 0 0 1 0 0 1 0 1
r3 0 0 0 1 0 0 0 1 0 0 0 1 1 0
r4 0 0 0 0 0 0 1 0 0 0 0 0 0 0
r5 1 0 0 0 1 0 0 0 0 1 0 0 0 1
r6 0 0 0 1 0 0 0 1 0 0 1 0 0 0
r7 0 1 0 0 0 0 0 0 0 0 0 1 0 1
r8 0 0 1 0 1 0 0 0 0 0 0 0 1 0

Figure 2. Boolean matrix B reflecting the structure of PLA AND plane of Figure 1, a

The goal of the array structure folding is to find the maximum number of columns/rows that can be folded
simultaneously.

Any two columns ci and cj are disjoint if R(ci) ∩ R(cj) = ∅. Two disjoint columns both do not have transistors on

any particular row of the array-based structure. A column folding list lck = (ck1, ck2,…, ckm) is a set of pairwise
disjoint columns cij, it is unordered in general case. An ordered column folding list lcok = <ck1, ck2,…, ckm> is a
column folding list lck whose elements cki are ordered. An ordered column folding list (OCFL) lcok of cardinality two
is an ordered column folding pair. Any OCFL lcok = <ck1, ck2,…, ckm> can be actually implemented in the same
vertical line of array-based structure moving сk1 above ck2, сk2 above ck3, an so on, сk,m-1 above сkm. So OCFL lcok

results to permutation on the set of rows: R(ck1) > R(ck2) – the rows of R(ck1) are all above those of R(ck2), R(ck2) >

R(ck3) – R(ck2) are all above those of R(ck3), and so on, R(ck,m-1) > R(ck,m) – the rows of R(сk,m-1) are all above
those of R(сkm) inducing the relation on row set R(B):

P r(lcok) =
ji,
 (R(cki) × R(ckj)), i.e. P r(lcok) = { rp × rq/rp ∈ R(cki), rq ∈ R(ckj), i < j }.

This relation is partial because it is irreflexive, asymmetric and transitive by its definition.

An ordered column folding set (OCFS) Lco = {lco1, lco2,…, lcok} is a set of disjoint ordered column folding lists. The

number k of columns entering into all OCFLs lcoi ∈ Lco is called the size of OCFS Lco. OCFS Lco induces a set of

ordering relations among the rows that is the union of ordering relations induced by OCFLs lcok belonging to the
OCFS P r(lco):

P r(Lck) =
k

i 1=
 (P r(lcoi)).

This relation P r(Lco) is irreflexive, asymmetric but not transitive in general case. The transitive closure Rt(P r) of
P r(Lco) is irreflexive, transitive but can be not asymmetric.

It is proven [DeMicheli, 1983] that an OCFS Lco is implementable topologically (by a folded array-based structure) if
the transitive closure Rt(P r) of the relation P r(Lco) is a partial ordering on R(B), that is Rt(P r) is asymmetric. In other

International Journal “Information Theories and Applications”, Vol. 18, Number 4, 2011

361

words, an OCFS Lcok is implementable topologically if there exist linear order of the rows R(B) extending the row
ordering P r(Lco).

An implementable OCFS Lco specifies the structure of the folded array, and its size is referred to as the size of the

folding: the number of OCFLs in Lco corresponds to the number of columns that will replace
k

i 1=

∑ |lci| columns of

the initial array-based structure.

An example of a PLA structure (in pictorial symbol) and its multiple folded form is depicted in Figure 1. Here the
“breaks” of the lines that occur on the folded columns are designated by the symbol “~”. The size of

implementable OCFS Lco = {<x6,x4, x6,x1>, <x2,x3, x3>, <x7,x7>, <x4,x2,x5, x1, x5>, <y2, y4>, <y5, y6, y7>,

<y1, y3>} (corresponding to the folded PLA) is equal seven and thus 7 columns of the folded regular structure
replace 21 columns of the initial structure.

So the formal statement of optimal folding problem is as follows: given a Boolean matrix representing array-based
structure, find an implementable ordered folding set of maximum size.

Simulated annealing formulation

Simulated annealing is a computer approach widely used to solve difficult optimization problems. Such an
approach is applied to a wide variety of applications where the search for optimal solution is needed. Any problem
requiring optimal or near optimal solution over a space formed from the combination of several variables is
considered to be a combinatorial approximation problem of the following type [Lee, 1995]:

Minimize (maximize) f(x), subject to gj(x) = 0, j = 1, 2,…, (1)

where f(x) is the cost (or object) function over the vector of configuration variables xi, and gj(x) are some
constraints.

The first widely available publication on simulated annealing belongs to Kirkpatrick et al. [Kirkpatrick, 1983].
Simulated annealing, developed by Kirkpatrick et al. treats combinatorial approximation analogously to the
annealing of metals. As in the actual annealing process (in which a good crystal structure is desired as the final
result), simulated annealing requires a carefully controlled cooling schedule to avoid a bad final solution. The
basic algorithm has been thoroughly discussed over the past several years (their overview could be found in [Lee,
1995], [Greening, 1995]).

In general case the combinatorial optimization problems could be presented as follows: there is a finite set G of

states gi(x) where each state gi(x) ∈ G is represented by n state variables: gi(x) = (x1, x2,…, xn). Then a cost
function Cost(gi(x)) is given. The goal is to find out the state gi(x) with minimum cost. Overwhelming majority of
such problems are NP-complete, so the algorithms to solve such problems require exponential time relative to n.
A near optimal state is often good enough in practice. One of the polynomial time heuristics for these problems is

International Journal “Information Theories and Applications”, Vol. 18, Number 4, 2011

362

the greedy algorithm. It does not always produce a satisfactory outcome but it is good algorithmic basis for
simulated annealing.

Simulated annealing augments the greedy algorithm with a random escape from local minima converting it to a
probabilistic hill-climbing algorithm. The escape is controlled through a value called as “temperature”. Higher
temperature makes the algorithm more likely to increase cost when selecting a trial state. In this way simulated
annealing can climb out of a local minimum. Figure 3 [Greening, 1995] shows how a simulated annealing
algorithm works.

t ← ts;
g ← starting state;
Cost ← Cost(g);
while not stopping criteria()

g* ← generate(g) with probability Gss*;
Cost* ← Cost(g*);
 ← Cost* – Cost;
if ( ≤ 0) ∨ (random() < e–/t)

g ← g* ;
Cost ← Cost* ;

t ← reduce temperature(t);
end while

Figure 3. Simulated annealing procedure

The first three operators of the simulated annealing procedure (Figure 3) set the initial temperature t, the current
state g and its cost Cost. The loop generates a trial state g*, evaluates its cost Cost* and change of cost . Then
if the condition is satisfied the algorithm selects this new state g* as the next current state g and reduces the

temperature until the stopping criteria is met. The condition “if ( ≤ 0) ∨ (random() < e–/t)” shows how

simulated annealing accepts a trial state. The term ( ≤ 0) expresses greedy strategy (it chooses a lower cost

trial state). The function random() returns a uniformly distributed random value between 0 and 1. The term

(random() < e–/t) evaluates the likelihood of permitting a costlier trial state, the probability of accepting a costlier
trial state decreases exponentially with the increase in cost and the decrease in temperature t.

The function “reduce temperature (t)” decreases the temperature according to a cooling schedule, which provides
fulfilling four major tasks in the proper way:

1) to set high enough starting temperature to accept most of the moves;

2) to determine when the present temperature is to be decreased;

3) to determine the next temperature;

4) to finish the process.

International Journal “Information Theories and Applications”, Vol. 18, Number 4, 2011

363

Together, the methods of generating moves and the cooling schedule form the foundation of simulated annealing
procedure. A starting temperature t0 must be assigned or calculated and a series of random alterations
(iterations) is then made. In accordance with the accepted condition of moves the sequence of states at one
temperature forms a Markov chain. When the chain reaches equilibrium at a particular temperature, the
temperature is decreased according to some cooling schedule and the procedure is repeated. The algorithm
terminates when a specified stopping condition is reached.

The number of iterations in an annealing run appears to be the most critical parameter in annealing, many
methods have been suggested (their review cold be found in Lee, 1995]). The simplest of them is the geometric
cooling schedule, where the starting temperature ts, chain length L, temperature decrement, and stopping
temperature Te are all predefined.

Multiple folded regular structure realization

Column folding can be obtained by permuting the rows of an array structure, so it introduces a restriction on the
order of the rows. That is, if column ci is folded with column cj and placed above it, then all the rows that have
cross points with the column ci must be placed above those rows that have cross points with the column cj. For
example, in Figure 1, to fold column x6 above x1, thus rows r2, r3 and r7 should be placed above r1 and r5.

The restrictions imposed on the order of rows by a list of folded columns can conflict with the row ordering desired
by another list of folded columns. An unconflicting ordering of rows is decided as optimal if it needs to the
maximal folding of columns or the minimal number of physical vertical lines. So we should find out such an
unconflicting ordering of rows.

 x1 x1 x2 x2 x3 x3 x4 x4 x5 x5 x6 x6 x7 x7
 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14
r6 0 0 0 1 0 0 0 1 0 0 1 0 0 0
r4 0 0 0 0 0 0 1 0 0 0 0 0 0 0
r3 0 0 0 1 0 0 0 1 0 0 0 1 1 0
r8 0 0 1 0 1 0 0 0 0 0 0 0 1 0
r2 0 0 0 0 0 0 0 0 1 0 0 1 0 1
r7 0 1 0 0 0 0 0 0 0 0 0 1 0 1
r5 1 0 0 0 1 0 0 0 0 1 0 0 0 1
r1 1 0 0 0 0 1 0 0 0 0 0 0 0 0

 x1 x1 x2 x2 x3 x3 x4 x4 x5 x5 x6 x6 x7 x7
 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14
r6 0 0 0 1 0 0 0 1 0 0 1 0 0 0
r4 0 0 0 1 0 0 1 1 0 0 0 0 0 0
r3 0 0 0 1 0 0 0 1 0 0 0 1 1 0
r8 0 0 1 0 1 0 0 0 0 0 0 1 1 0
r2 0 0 0 0 1 0 0 0 1 0 0 1 0 1
r7 0 1 0 0 1 0 0 0 0 0 0 1 0 1
r5 1 0 0 0 1 0 0 0 0 1 0 0 0 1
r1 1 0 0 0 0 1 0 0 0 0 0 0 0 0

Figure 4. Boolean matrix Bπ induced by the matrix B of Fig.2 Figure 5. Interval matrix Lπ corresponding to Bπ in Fig. 4

As column folding is formulated as a row permutation problem, during the column folding phase the rows of an
array structure are permuted to ensure some columns could be share the same vertical lines of the folded
structure using less lines comparing the initial number of columns. To derive the conditions row permutation
should satisfy to lead to a maximal size column folding, let consider the result of multiple folding of regular

International Journal “Information Theories and Applications”, Vol. 18, Number 4, 2011

364

structure (Figure 1). It corresponds to some row permutation π that defines the row sequence and is one-to-one

function of assigning rows of initial matrix B (Figure 2) to horizontal lines: {π(r1), π(r2)..., π(rm)} → {r6, r4, r3, r8, r2,

r7, r5, r1}. So the Boolean matrix B will be transformed into the Boolean matrix Bπ (Figure 4) with permuted rows

that is functionally equivalent to B but correspond the other structure realization. Then, the columns of Bπ will be

rearranged in top-to-bottom manner and a column partition is resulted describing a folded structure in symbolic

form. The matrix Bπ defines a graph G = (V, E), where V is the set of columns and two vertices vi and vj are

connected by an edge eij ∈ E if the appropriate columns ci
π and cj

π intersect (have a 1 in the same row):

ci ∩ cj ≠ ∅.

An ordering of rows induced by permutation π is termed as optimal if it induces the maximal folding of columns or,
as the same, the minimum number of physical vertical lines of the folded structure. It follows from the folded

structure that there exists column partition Cπ = {С1, С2,..., Сk} concerning to the row permutation π, such that all

the columns of each component set Сk are mutually compatible and so form the folding list, and Cπ as a folding

set is realizable. For our example, for the Boolean matrix Bπ we could obtain Cπ = {{c11, c7, c12, c1}, {c4, c5, c6},

{c13, c14}, {c8, c3, c9, c2, c10}}. The cardinality k of the partition Cπ defines the width of the row-permuted folded
structure or the number of packed columns in it. The goal is to find out a row permutation that permits a column

partition Cπ of minimal cardinality.

Now let us introduce some notions to formulate the procedure of evaluation of a row permutation π. For a given

permutation π the regular structure folding is realized by attaching to each vertical line column parts sharing it.
Such parts correspond to intervals [introduced by Wong, 1988] that are established in the columns of the matrix

Bπ from the topmost to the lowermost 1’s: lk = [
i

min cik,
i

max cik,], where cik is i-th component of k-th column

having value 1. Such a way the matrix Bπ induces interval matrix Lπ for a given row permutation π. Just the

intervals will be assigned in the proper way to vertical lines of the folded array structure also need the minimum

number of vertical lines for the folded structure. When proceeding from Bπ to Lπ the densities dπi of the rows (the

number of columns intersecting the row dπi) are increased in the general case. Reducing the row densities
promotes placing more columns on a single physical line, and that can be done by proper permutation of rows.

For our example, we have the interval matrix Lπ shown in Figure 5 (where the initially given 1’s are represented in

thick print in contrast to augmented 1’s that are of regular type) and following the collection of intervals:

Lπ = {[7,8], [6,6], {[4,4], {[1,3], {[4,7], {[8,8], {[2,2], {[1,3], {[5,5], {[7,7], {[1,1], {[3,6], {[3,4], {[5,7]}.

To find out the size of folding associated with the permutation π let consider the compatibility relation between

intervals: a pair of intervals li, lj are compatible if they do not intersect (the appropriate columns of the matrix Lπ

do not have a 1 in the same row): li ∩ lj = ∅. Compatible intervals may be assigned the same vertical line in a
proper layout. The inverse relation is the incompatibility relation that can be represented by the intersection graph

http://en.wikipedia.org/wiki/Intersection_graph�

International Journal “Information Theories and Applications”, Vol. 18, Number 4, 2011

365

G = (V, E), where the vertices of V correspond to intervals and (vi, vj) ∈ E if and only if li and lj intersect,

(li ∩ lj ≠ ∅). The graph is an interval graph. Interval graphs are a kind of the chordal graphs [Hsu, 1999] having
some remarkable properties reducing NP-complete problem of searching of realizable folding sets to a solvable in
polynomial-time.

It have been stated that the size of folding (associated with row permutation π) equals to the chromatic number of
an interval graph G = (V, E) and the color classes correspond to collections of intervals each of which can be
feasibly assigned to a line. Then the chromatic number of the interval graph is equal to the maximal degree of

vertices of the graph G. In other words the size of folding associated with a row permutation π can be found

directly from the corresponding interval matrix Lπ – it is the maximal density of the matrix rows (denoted later as

dπ) [Wong, 1988]. And further a minimum size folding induced a row permutation π can be found solving 1) the

task of graph coloring: the color classes of an interval graph may be obtained by applying a simple linear-time
algorithm to the vertices of an interval graph G = (V, E) [Golumbic, 1977] , or 2) the task of interval ordering by

applying to the collection Lπ of intervals a special simple “Left Edge Algorithm” [Hashimoto, 71].

The interval graph G = (V, E) for our example is depicted in Figure 6. The graph chromatic number equals 4. The

appropriate ordered column folding set is Lco = {<c11, c7, c12, c1>, <c4, c5, c6>, <c14, c13>, <c8, c3, x9, c2, c10>, it is
implementable and the corresponding folded regular structure is given as a part of Figure 1, b.

Thus from above, it can draw a conclusion that any row permutation is evaluated in a simple way: the value of dπ
is the numerical value of the row permutation quality. And after choosing the best row permutation, the partition of
the columns set on a collection of column folding lists is fulfilled by linear-time algorithm.

Figure 6. Interval graph G = (V, E) Figure 8. PLA multiple folded form subject to signal routing lines

c1

c2 c3
c4

c5

c6

c7

c8
c9c10

c11

c12

c13

c14

[1]

[1]

[1]

[1]

[2]

[2]

[2][3]

[3]

[4] [4]

[4] [4]
[4]

y1y2

y3y4

y5

y6

y7
r5

r6

r7

r3

r8

r1

r4

r2

x4

x6

x5

x3

x2

x3

x5

x1

x7x7 x1 x6 x4 x2

http://en.wikipedia.org/wiki/Greedy_coloring�

International Journal “Information Theories and Applications”, Vol. 18, Number 4, 2011

366

Multiple folding via the method of simulated annealing

Here we consider how to solve the problem of multiple column folding using the method of simulated annealing.
During the column-folding phase, the rows of an array structure are permuted to minimize the area due to folding
some columns. In that case array structure will have fixed height and decreased width. The aim of the column-
folding phase is to minimize the width of the structure. Indirectly, to minimize the width, it would be necessary to
minimize the number of the columns. The goal is to obtain an ordering of rows that will allow maximal packing the
columns.

Figure 7 shows how the realized simulated annealing folding algorithm works. The current row order π in the

matrices Bπ and Lπ is a state in the process of simulated annealing. And the starting state is the initial row order

{r1, r2,…, rm}. A move is a permutation of a pair of columns and it changes the current state for some neighbor

one. The temperature schedule is represented by geometric series where starting value t0 = λt n and each
successive temperature value is obtained by multiplying the previous one by some constant value that is 0.85 that
is less than 1 and so the temperature values approach zero in the limit. Here n is the number of columns, the

value λt < 1 is taken as 0.8 (for it experimental results indicate good results obtained) [Wong, 1988]. The number

of iterations (moves) at each temperature is accepted as r0 = 2 λr Cm2, Cm2 = m (m–1)/2 is the number of
2-combinations (the number of possible neighbor states) – the number of all possible moves where the value

λr < 1 is taken as 0.5 [Van Laarhoven, 1987], m is the number of rows.

Each trial state is evaluated with a cost function Qπ. The goal of an annealing folding algorithm is to find out the

interval matrix Lπ with minimum of maximal density: max of dπ → min. Taking into account that the row

permutation and the corresponding to it maximal density are random quantities, the cost function Qπ is expressed
as quadratic one:

Qπ = (dπ)2 + ∑ ππ
λ

i id
m

2)(, (2)

where λ is accepted to be 0.5 reducing the influence of extra item ∑ π

i id
m

2)(
1 by a half. The trial is successful if

the cost value of the current state is less than that of the best previous state. The simulated annealing process is
terminated if the number of successful steps at a current temperature is less than 5% of all moves or the
temperature became low enough.

B ← B0 B0 – initially given Boolean matrix presenting regular structure under
folding
π ← π0 π0 – initial state, i.e. initial order of rows: π0 = {c1, c2, …, cm}
Lπ ← Lπ0 Lπ

0 – interval matrix Lπ corresponding to the row permutation π0
t ← t0 t0 – starting temperature: t0 = 0.8 n
rt ← r0 r0 – the number of iterations (moves) at starting
temperature r0 = m (m–1)/4

International Journal “Information Theories and Applications”, Vol. 18, Number 4, 2011

367

Qπ ← Qπ
0 Qπ

0 – the cost function that is the row permutation quality equaled to
dπ –

(maximal number of 1’s in a row of the interval matrix Lπ)
while ((δt ≥ 0.05 rt) ∨ (t ≠ 0)) do not stopping criteria()

begin
i ← 0 i is the serial number of iteration at a current temperature t
δt ← 0 δt is the number of successful steps at a current temperature
t

while (i < rt) do for t = tconst

begin
π*← generate random neighbor of π
B* ← Bπ* building Boolean matrix B for π*
Lπ* ← Lπ(π*) building interval matrix for π*
Qπ* ← Qπ(π*) evaluating Lπ*
 ← Qπ* – Qπ
if (( ≤ 0) ∨ (random(0,1) < e–/t)) then

π ← π*; B ← Bπ*; Qπ ← Qπ*;
δt ← increase the number of successful steps(δt)

end while
t ← reduce temperature(t); new temperature will be 0.85 of current value

end while the best solution is obtained

Figure 7. Simulated annealing folding procedure

Constrained multiple folding

The discussed procedure of multiple folding will be modified when some constraints on the form of folded
structure are imposed. Such folding constraints can be divided on the following basic groups.

1. Structure-defined constraints. This class of constraints is defined by an array structure type in use. For
example, use of PLA forces to take into consideration that its layout consists of AND-plane and OR-plane.

2. Input/Output constraints. This class of constraints depends on the environment in which the folded structure
should be placed. For example, these can be the ordering of input/output directions, relative positions of
input/output lines, grouping of input/output lines.

3. Electrical constraints. This class of constraints forces to limit the folding type. For example, it could be only
simple or bipartite folding.

International Journal “Information Theories and Applications”, Vol. 18, Number 4, 2011

368

4. Physical Constraints. This class of constraints concerns to input lines carrying a signal and its inversion. For
example, the appropriate array structure columns (or rows) may not share the line, so they cannot be folded, and
sometimes they should be placed to each other as close as possible.

Further we show how we take proper account of some constraints imposed on folding demonstrating on the
example of simple folding and PLA folding.

PLA folding via the method of simulated annealing

A PLA realizes a collection of Boolean functions in disjunctive normal form. It is a two-dimensional array
consisting of an AND-plane and OR-plane. Its vertical lines are assigned with the input variables (and their
complements) and output variables. Inputs run vertically through the AND-plane that generates signals on its
rows, which are used as inputs to the OR-plane. The PLA folding allows some its columns to share a vertical line
(or rows to share a horizontal line). An example of the PLA structure and its free folded form is shown in Figure 1.
Here, a dot means placing a transistor on a cross point of vertical and horizontal lines.

PLA layout has structure-defined constraint that disallows a column of the AND-plane to share the same vertical
line with a column of the OR-plane. Then, any physical realization of a folded PLA must ensure inputs/outputs be
connected to the PLA outside. In [Wong, 1988] two possible architectures of implementation of routing lines
carrying input/output signals to outside (with the help of horizontal auxiliary connection lines) and the modification
of the simulated annealing process are shown.

So, PLA multiple folding is the constrained multiple folding of an array structure. It comes easily to take into
account the first constraint when formulating the simulated annealing procedure. In this case the interval matrix

Lπ consist of two column submatrixes corresponding to the AND- and OR-planes, and we should distinguish

between input dπini and output dπouti densities of the matrix Lπ rows. Then we construct two interval graphs

Gin = (Vin, Ein) and Gout = (Vout, Eout) for the AND- and OR-planes. And the folding size associated with a row

permutation π equals the sum of chromatic numbers of these graphs or it equals the maximal density dπ that is

calculated as the sum of maximal input dπin and output dπout densities. Thus the simulated annealing procedure for

solving the task of such constrained multiple folding distinguishes from the above formulated one only with the

calculating maximal density dπ and accordingly the cost function Qπ.

In exactly the same way we can take into account the second constraint (concerning signal input and output), it is
made by means of augmenting intervals in a proper way the structure have place to feed signals to its inputs and
from its outputs. Thus we take a proper account of increasing interval lengths on the step of transforming matrix

Bπ into the interval matrix Lπ. The folded form of PLA from Figure 1,a that takes into account the routing lines is

depicted in Figure 8.

International Journal “Information Theories and Applications”, Vol. 18, Number 4, 2011

369

Simple folding via the method of simulated annealing

Now we consider how to take into account more complex constraints – electrical constraints resulted to limit the
folding type, for example, it could be only simple folding. Remember that folding is called simple if utmost two
columns (rows) are allowed to share a single physical vertical (and/or horizontal) line.

Simple column folding has an evident advantage over multiple columns folding because external signals could
connect to the folded structure either from the top, or the bottom of a folded structure because there is at most
one break in any column. This simplifies routing signals, in addition, despite multiple folding might result in larger
area reduction, simple folding allows reduce occupied routing area.

To take into account the peculiarity of simple folding in [Wong, 1988] it is proposed to use the same annealing
schedule as for multiple folding but with other cost function (2). The function value depends on the matching
number of undirected graph of pairwise compatibility (foldability) of PLA structure columns. Thus, at each
simulated annealing iteration, we have to make the laborious procedure of compatibility graph construction and its
matching number computation.

We propose to reduce the laboriousness of simple folding via simulated annealing method thanks to single
implementation of the mentioned procedure of compatibility graph construction and its matching number
computation. That cannot allow to obtain maximum folding in some cases but taking into account that simulated
annealing method is a heuristic method that does not guarantee the optimum, the proposed idea is good enough.

The main point is based on the heuristics that we can get a good simple folding on basis of a good multiple
folding. Thus, first we find out the best row permutation of array structure under folding using the proposed above
procedure of multiple folding via the method of simulated annealing. Then we don’t find array structure multiple
folding itself but we will search for its best simple folding.

So, let we have now row permutation π and the corresponding interval matrix Lπ (for the considered example it is
shown in Figure 5). Let remember two intervals li, lj are compatible if they do not intersect, a pair ci, cj of
corresponding columns are foldable and may be assigned the same vertical line in a proper layout. Let H = (V, E)

be an undirected graph, where the vertices of V correspond to intervals and (vi, vj) ∈ E if and only if li and lj don’t

intersect, (li ∩ lj = ∅). The size of simple folding associated with row permutation π equals to the matching

number of the graph H = (V, E) and the matching corresponds to collections of folding pairs.

A matching M in a graph H is a set of pairwise non-adjacent edges; that is, no two edges share a common vertex.
Each edge in M defines a folding pair, and a set M specifies a folding set. Correspondingly, a maximum matching
(that contains the largest possible number of edges) gives a folding set of maximum size. The number of columns
of folded such a manner structure is equal the matching number plus the number of unmatched vertices of the
graph H.

http://en.wikipedia.org/wiki/Non-adjacent�

International Journal “Information Theories and Applications”, Vol. 18, Number 4, 2011

370

For our example the graph H = (V, E) (corresponding to interval matrix Lπ in Figure 5) is shown in Figure 9. Here

all graph edges, but matching, are shown as thin lines and edges of the matching edges are shown as heavy
lines. The folding variant of PLA shown in Figure 1,a is given in Figure 10.

[3]

c1

c2 c3
c4

c5

c6

c7

c8

c9

c10

c11

c12

c13

c14

[1]

[1]

[1]
[1]

[2]

[2]

[2]

[3]

[4] [4]

[4] [4]
[4]

r5

r6

r1

r3
r8

r7

r4

r2

y2

y4

y1

y3

y5 y7

y6

x6

x4x1 x3

x3x2

x7 x5

x1

x2

x7

x5

x4 x6

Figure 9. Compatibility graph H = (V, E) Figure 10. PLA simple folded form

Experimental results

The simulated annealing algorithms for multiple and simple folding (have been described above) were formulated
for one of the types of regular structures, PLA structure, and were realized using Visual C++. Then they were
compared on the stream of benchmarks [Berkeley, 2006].The objectives of performed computer experiments are
to state:

1) the degree of PLA area reduction that could be achieved by both simple and multiple folding;

2) the dependence of degree of PLA area reduction on PLA AND- and OR-planes sparseness;

3) the comparative evaluations of two types PLA folding: simple and multiple ones.

As the basic parameter of PLA structures governed the degree of PLA compaction the density of PLA AND- and
OR-planes was accepted. The density of PLA planes is the percent of active transistors in them (in relation to
number of all transistors), or the PLA density is the ratio between the number of unit elements of Boolean matrix
B (Figure 2) to whole number of its components.

The results of the testing are given in Figure 11; at the bottom of the Figure, in X-direction, bench PLA names are
placed accompanied their densities. In Y-direction there are values of PLA area compaction expressed in

percentage, that is %
n
k , where n is the number of PLA columns under folding and k is the number of the folded

PLA columns.

International Journal “Information Theories and Applications”, Vol. 18, Number 4, 2011

371

Experimental results allow to draw a conclusion concerning the domains of applicability of simple and multiple
folding. The results indicate that:

1) multiple folding gives better results for sparse PLA cases, or numerically in cases when PLA density is less
than 20%;

2) simple folding gives better results for dense PLA cases, or numerically in cases when PLA density is more than
25%;

3) in the range of PLA densities 20 – 25% multiple and simple PLA foldings are competed with each other.

0
5

10
15
20
25
30
35
40
45
50
55

t8
(4,

5%
)

ap
ex

3 (
7,5

%)

ap
ex

1 (
9,3

%)

аrb
itr

 (1
0,1

%)

mise
x2

 (1
2,9

%)

b12
 (1

4,3
%)

vg
2 (

14
,6%

)

co
n1

 (1
8,2

%)

duke
2 (

19
,8%

)

mise
x1

 (2
3,8

%)

*sq
rt8

 (2
4,2

%)

*su
m5 (

26
,7%

)

*аl
u4

 (2
7,3

%)

*su
m2 (

28
,3%

)

*ad
d4 (

28
,7%

)

*cl
ip (2

9,5
%)

*ad
d3 (

31
,9%

)

*m
p3

 (3
4,0

%)

*ta
ble5

 (3
5,2

%)

*su
2k

 (3
6,3

%)

*sa
o2 (

36
,4%

)

*ad
d2 (

37
,5%

)

*in
c (

39
,7%

)

*b
w (4

0,2
%)

*ta
ble3

 (4
0,8

%)

 A
re

a
co

m
pa

ct
io

n
(%

)

Multiply Folding Simple Folding

Figure 11. The results of experimental investigations of multiple and simple folding using simulated annealing algorithm

Conclusion

The problem of reducing the area of the layout of two dimensional array structures is investigated. We consider
probabilistic heuristic algorithms based on simulated annealing procedure, they are well suited for compacting
sparse structures having not great percentage of active elements (transistors).

Simulated annealing folding algorithms are investigated for the case of PLA multiple and simple column folding.
The results of investigation show that 1) simulated annealing can give enough good results in the sense of area
reduction, and 2) simple folding behaves not worse comparing with multiple folding on the stream of PLAs have
been considered allowing for finding often solutions with the same cost function.

International Journal “Information Theories and Applications”, Vol. 18, Number 4, 2011

372

Bibliography

[Ullman, 1984] D. Jeffrey Ullman Computational aspects of VLSI. Rockville, Md.: Computer Science Press, 1984, 495 p.

[Hachtel, 1982] G.D. Hachtel, A.R. Newton and A.L. Sangiovanni-Vincentelli. An Algorithm for optimal PLA Folding. In: IEEE
Trans. Computer-Aided Design of Integrated Circuit Syst., 1982, vol. CAD–1, No 2, pp. 63–77.

[DeMicheli, 1983] G. DeMicheli and A. Sangiovanni-Vincentelli. A. Multiple Constrained Folding of Programmable Logic
Arrays: Theory and Applications. In: IEEE Trans. Computer-Aided Design, 1983, Vol. CAD-2, No 3, pp. 151–167.

[Wong, 1988] D.F. Wong, H.W. Leong, C.L. Liu. Simulated Annealing for VLSI Design. Kluwer Academic Publ., Boston,
1988, 220 p.

[Lee, 1995] Fu-H. A. Lee. Parallel simulated annealing on a message-passing multi-computer, Doctor of philosophy thesis,
UTAH STATE UNIVERSITY, Logan, Utah, 1995.

[Kirkpatrick, 1983] S. Kirkpatrick, Jr. C. D. Gelatt and M. P. Vecchi. Optimization by simulated annealing. In: Science, 1983,
220 (4598), pp. 671–680.

[Van Laarhoven, 1987] P.J.M. Van Laarhoven and E. H. L. Aarts. Simulated Annealing: Theory and Applications. D. Reidel,
Dordrecht, 1987.

[Hsu, 1999] W.-L. Hsu and T.-H. Ma. Fast and simple algorithms for recognizing chordal comparability graphs and interval
graphs. SIAM J. Comput., 1999, Vol. 28, No 3, pp.1004–1020.

[Golumbic, 1977] M.C. Golumbic. The complexity of comparability graph recognition and coloring. Computing, 1977, Vol. 18,
pp. 199-208.

[Greening, 1995] D. R. Greening. Simulated Annealing with Errors, Doctor of philosophy thesis, UNIVERSITY OF CA, Los
Angeles, 1995.

[Hashimoto, 71] A. Hashimoto, J. Stevens. Wire Routing by Optimizing Channel Assignment Within Larger Apertures. In:
Proc. of 8th Design Automation Workshop, 1971.

[Berkeley, 2006] Berkeley PLA test set [Electronic resource]. – Mode of access: http:// www1.cs.columbia.edu/ ~cs4861/sis/
espresso-examples/. – Date of access: 03.05.2006.

The research was partially supported by the Fond of Fundamental Researches of Belarus (Project Ф10P–035).

Authors' Information

Liudmila Cheremisinova – Principal Researcher, The United Institute of Informatics Problems

of National Academy of Sciences of Belarus, Surganov str., 6, Minsk, 220012, Belarus, e-mail:

cld@newman.bas-net.by

Major Fields of Scientific Research: Logic Design, CAD systems, optimization

Irina Loginova – Senior Researcher, The United Institute of Informatics Problems of National

Academy of Sciences of Belarus, Surganov str., 6, Minsk, 220012, Belarus, e-mail:

cld@newman.bas-net.by

Major Fields of Scientific Research: Topological Design, CAD systems

mailto:cld@newman.bas-net.by�
mailto:cld@newman.bas-net.by�

	Introduction
	Mathematics
	Math truth
	Applied Mathematics
	Heuristics
	Uncertainty
	Experiment
	Sequence of Experiment and their registration
	Randomness as a classical example of Uncertainty
	Plural model of Uncertainty
	Mathematical means for uncertainty handling
	Fuzzy Theory and statistical interpretation of membership function
	Some lacks of the Fuzzy Theory
	Natural examples of membership function: Generalized variants of logit - and probit regression
	Natural examples of membership function: Markov chain
	Natural examples of membership function: Bayesian nets
	Probabilistic Interpretation membership function
	Probabilistic Interpretation membership function: discrete supporter
	Probabilistic Interpretation membership function: non discrete supporter
	Modified Definition of Fuzzy Sets
	Observations of the Modified Fuzzy Sets
	Likelihood method for the Modified Fuzzy Sets
	Multisets Theory
	Multisets Theory and Fuzziness
	Conclusion
	Bibliography
	Authors' Information
	1. Introduction
	2. Unit measure for parameters of statistical instability
	3. New parameters of statistical instability
	4. Particularities of statistical instability parameters
	5. Fluctuation of expectation
	6. Correlation
	7. Fluctuation of variance
	8. Example of statistically instable process
	9. Conclusion
	Bibliography
	Authors' Information
	Introduction
	Wavelet-neuron and its learning algorithm
	Hybrid cascade wavelet neural network
	Leaning algorithms for hybrid cascade wavelet–neural network
	Conclusion
	Acknowledgement
	Bibliography
	Authors' Information
	Introduction
	Related work
	Memetic Algorithm
	Tabu Search
	Optimized Memetic Algorithm
	Experiments on larger instances
	Conclusion
	Bibliography
	Authors' Information
	Introduction
	Array structures style and their folding
	Simulated annealing formulation
	Multiple folded regular structure realization
	Multiple folding via the method of simulated annealing
	Constrained multiple folding
	PLA folding via the method of simulated annealing
	Simple folding via the method of simulated annealing
	Experimental results
	Conclusion
	Bibliography
	Authors' Information
	Introduction and problem statement
	The spatial model of the person to fix the units of sign language
	Modeling of facial expression and articulation of a human face during pronunciation
	Modeling of gestures animation and facial expressions
	Information technology to play the animation process
	Conclusions
	Bibliography
	Authors' Information
	Introduction
	1 Set of a problem
	2 Constructs models of an implicit choice
	Conclusions
	Bibliography
	Authors' Information
	Introduction
	BR-based software development
	BR-based software modernization – BR extraction from the software system
	How to automate the BR extraction from a legacy system
	Conclusion
	Acknowledgments
	Bibliography
	Authors' Information

