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Abstract: In the paper the programmable logic array (PLA) topological optimization problem is dealt with using 

folding techniques. A PLA folding algorithm based on the method of simulated annealing is presented. A 

simulated-annealing PLA folding algorithm is presented for multiple unconstrained folding. Then, the algorithm is 

extended to handle constrained folding. In this way, simple folding is considered as a case of multiple constrained 

folding. Some experimental results of computer investigation of the suggested algorithms are given. 
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Introduction 

Structured logic refers to logic forms that exhibit a high degree of regularity in their layout and interconnections. 
Such layout is referred to a regular layout style that is constructed according to some definite architecture and 
established in advance for some structured logic. Typical widely used regular structures are Programmable Logic 
Arrays (PLA’s), gate matrix arrays, Weinberger Arrays [Ullman, 1984]. All these forms have a two-dimensional 
structure consisting of a matrix of rows and columns. There are transistors in intersections of some rows and 
columns. The use of such regular structures makes it possible to automatically generate the layout from its 
functional description. The price paid for the structural regularity is a larger chip area because the layouts 
obtained are sparse: a large percentage of the row-column intersections are not personalized. In order one to 
have a clear idea of degree of structural rarity, it can be said that previous research has shown that on average, 
about half of the entries in the personality matrices of large structures in real circuits are not personalized. 
Several techniques have been proposed for reducing the area required. 

Since matrix is the central part of any regular structure mentioned above, we consider further just it and then we 
show how to expand the obtained results to real regular structures taking into account the peculiarities of their 
layout and some other constraints resulted from the implementation circuit on the base of these array structures 
and the chosen type of topological minimization. 
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Techniques of topological minimization reduce the number of physical columns and/or rows, they change the PLA 
structure by using a procedure called folding [Hachtel, 1982], [DeMicheli, 1983]. Folding is a technology-
independent transformation, it is developed for array structures and attempts to place two or more columns 
(and/or rows) together in the same physical vertical (and/or horizontal) line (signal bus) so that they can share this 
line. Column folding is said to be simple if utmost two columns (rows) share a single physical vertical (and/or 
horizontal) line. It is called multiple if more than two columns can share a single column. 

Folding does not change the implemented logic in any manner, but reduces the number of columns (and/or rows), 
and thus reduces the area. In the paper we deal with array structure folding and its effects on its square.  

[Wong, 88] proposes the use of simulated-annealing to solve the PLA folding problem for the case of multiple 
unconstrained folding. In this approach, entire solutions are analyzed one after another by producing different 
permutations of rows. In the paper we also propose the solution of multiple unconstrained and constrained folding 
problem and extend the suggested simulated-annealing algorithm to solve a special case of multiple constrained 
folding – simple folding. Then we give some experimental results of computer investigations of the suggested 
simulated-annealing algorithms based on simple and multiple PLA folding and comparative evaluation of their 
effects on PLA layout reduction. 

Array structures style and their folding 

Any array structure can be represented by specifying the positions of of their elements (transistors) in its plane. In 
the folding problem it can be described in symbolic form by a Boolean matrix B having sets C(B) and R(B) of their 
columns (where uncomplemented and complemented modes of a variable have their own distinct column) and 
rows. A 1 in the position i,j of the matrix B means that there is an appropriate crosspoint (transistor) between the 

i-row and the j-column in the matrix. Each column ci ∈ C(B) implies a set R(ci) ⊆ R(B) of rows, which are 

populated on it: rj ∈ R(ci) ↔ bji = 1. For instance, for PLA on Figure 1 Boolean matrix B corresponding to AND-
plane is depicted in Figure 2. 

  

a)                                                                                                    b) 

Figure 1. An example of array-based structure: a) PLA; b) PLA multiple folded form 
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 x1 x1 x2 x2 x3 x3 x4 x4 x5 x5 x6 x6 x7 x7 
 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 
r1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 
r2 0 0 0 0 0 0 0 0 1 0 0 1 0 1 
r3 0 0 0 1 0 0 0 1 0 0 0 1 1 0 
r4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
r5 1 0 0 0 1 0 0 0 0 1 0 0 0 1 
r6 0 0 0 1 0 0 0 1 0 0 1 0 0 0 
r7 0 1 0 0 0 0 0 0 0 0 0 1 0 1 
r8 0 0 1 0 1 0 0 0 0 0 0 0 1 0 

 

Figure 2. Boolean matrix B reflecting the structure of PLA AND plane of Figure 1, a 

 

The goal of the array structure folding is to find the maximum number of columns/rows that can be folded 
simultaneously. 

Any two columns ci and cj are disjoint if R(ci) ∩ R(cj) = ∅. Two disjoint columns both do not have transistors on 

any particular row of the array-based structure. A column folding list lck = (ck1, ck2,…, ckm) is a set of pairwise 
disjoint columns cij, it is unordered in general case. An ordered column folding list lcok = <ck1, ck2,…, ckm> is a 
column folding list lck whose elements cki are ordered. An ordered column folding list (OCFL) lcok of cardinality two 
is an ordered column folding pair. Any OCFL lcok = <ck1, ck2,…, ckm> can be actually implemented in the same 
vertical line of array-based structure moving сk1 above ck2, сk2 above ck3, an so on, сk,m-1 above сkm. So OCFL lcok 

results to permutation on the set of rows: R(ck1) > R(ck2) – the rows of R(ck1) are all above those of R(ck2), R(ck2) > 

R(ck3) – R(ck2) are all above those of R(ck3), and so on, R(ck,m-1) > R(ck,m) – the rows of R(сk,m-1) are all above 
those of R(сkm) inducing the relation on row set R(B): 

P r(lcok) = 
ji,
 (R(cki) × R(ckj)),   i.e.   P r(lcok) = { rp × rq/rp ∈ R(cki), rq ∈ R(ckj), i < j }. 

This relation is partial because it is irreflexive, asymmetric and transitive by its definition. 

An ordered column folding set (OCFS) Lco = {lco1, lco2,…, lcok} is a set of disjoint ordered column folding lists. The 

number k of columns entering into all OCFLs lcoi ∈ Lco is called the size of OCFS Lco. OCFS Lco induces a set of 

ordering relations among the rows that is the union of ordering relations induced by OCFLs lcok belonging to the 
OCFS P r(lco): 

P r(Lck) = 
k

i 1=
 (P r(lcoi)). 

This relation P r(Lco) is irreflexive, asymmetric but not transitive in general case. The transitive closure Rt(P r) of 
P r(Lco) is irreflexive, transitive but can be not asymmetric. 

It is proven [DeMicheli, 1983] that an OCFS Lco is implementable topologically (by a folded array-based structure) if 
the transitive closure Rt(P r) of the relation P r(Lco) is a partial ordering on R(B), that is Rt(P r) is asymmetric. In other 
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words, an OCFS Lcok is implementable topologically if there exist linear order of the rows R(B) extending the row 
ordering P r(Lco).  

An implementable OCFS Lco specifies the structure of the folded array, and its size is referred to as the size of the 

folding: the number of OCFLs in Lco corresponds to the number of columns that will replace 
k

i 1=

∑ |lci| columns of 

the initial array-based structure.  

An example of a PLA structure (in pictorial symbol) and its multiple folded form is depicted in Figure 1. Here the 
“breaks” of the lines that occur on the folded columns are designated by the symbol “~”. The size of 

implementable OCFS Lco = {<x6,x4, x6,x1>, <x2,x3, x3>, <x7,x7>, <x4,x2,x5, x1, x5>, <y2, y4>, <y5, y6, y7>, 

<y1, y3>} (corresponding to the folded PLA) is equal seven and thus 7 columns of the folded regular structure 
replace 21 columns of the initial structure. 

So the formal statement of optimal folding problem is as follows: given a Boolean matrix representing array-based 
structure, find an implementable ordered folding set of maximum size. 

Simulated annealing formulation 

Simulated annealing is a computer approach widely used to solve difficult optimization problems. Such an 
approach is applied to a wide variety of applications where the search for optimal solution is needed. Any problem 
requiring optimal or near optimal solution over a space formed from the combination of several variables is 
considered to be a combinatorial approximation problem of the following type [Lee, 1995]: 

Minimize (maximize) f(x), subject to gj(x) = 0, j = 1, 2,…,       (1) 

where f(x) is the cost (or object) function over the vector of configuration variables xi, and gj(x) are some 
constraints. 

The first widely available publication on simulated annealing belongs to Kirkpatrick et al. [Kirkpatrick, 1983]. 
Simulated annealing, developed by Kirkpatrick et al. treats combinatorial approximation analogously to the 
annealing of metals. As in the actual annealing process (in which a good crystal structure is desired as the final 
result), simulated annealing requires a carefully controlled cooling schedule to avoid a bad final solution. The 
basic algorithm has been thoroughly discussed over the past several years (their overview could be found in [Lee, 
1995], [Greening, 1995]). 

In general case the combinatorial optimization problems could be presented as follows: there is a finite set G of 

states gi(x) where each state gi(x) ∈ G is represented by n state variables: gi(x) = (x1, x2,…, xn). Then a cost 
function Cost(gi(x)) is given. The goal is to find out the state gi(x) with minimum cost. Overwhelming majority of 
such problems are NP-complete, so the algorithms to solve such problems require exponential time relative to n. 
A near optimal state is often good enough in practice. One of the polynomial time heuristics for these problems is 
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the greedy algorithm. It does not always produce a satisfactory outcome but it is good algorithmic basis for 
simulated annealing. 

Simulated annealing augments the greedy algorithm with a random escape from local minima converting it to a 
probabilistic hill-climbing algorithm. The escape is controlled through a value called as “temperature”. Higher 
temperature makes the algorithm more likely to increase cost when selecting a trial state. In this way simulated 
annealing can climb out of a local minimum. Figure 3 [Greening, 1995] shows how a simulated annealing 
algorithm works. 

t ← ts; 
g ← starting state; 
Cost ← Cost(g); 
while not stopping criteria( ) 

g* ← generate(g) with probability Gss*; 
Cost* ←  Cost(g* ); 
 ← Cost* – Cost; 
if ( ≤ 0) ∨ (random() < e–/t) 

g ← g* ; 
Cost ← Cost* ; 

t ← reduce temperature(t); 
end while 

Figure 3. Simulated annealing procedure 

The first three operators of the simulated annealing procedure (Figure 3) set the initial temperature t, the current 
state g and its cost Cost. The loop generates a trial state g*, evaluates its cost Cost* and change of cost . Then 
if the condition is satisfied the algorithm selects this new state g* as the next current state g and reduces the 

temperature until the stopping criteria is met. The condition “if ( ≤ 0) ∨ (random() < e–/t)” shows how 

simulated annealing accepts a trial state. The term ( ≤ 0) expresses greedy strategy (it chooses a lower cost 

trial state). The function random() returns a uniformly distributed random value between 0 and 1. The term 

(random() < e–/t) evaluates the likelihood of permitting a costlier trial state, the probability of accepting a costlier 
trial state decreases exponentially with the increase in cost and the decrease in temperature t. 

The function “reduce temperature (t)” decreases the temperature according to a cooling schedule, which provides 
fulfilling four major tasks in the proper way: 

1) to set high enough starting temperature to accept most of the moves; 

2) to determine when the present temperature is to be decreased; 

3) to determine the next temperature; 

4) to finish the process. 
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Together, the methods of generating moves and the cooling schedule form the foundation of simulated annealing 
procedure. A starting temperature t0 must be assigned or calculated and a series of random alterations 
(iterations) is then made. In accordance with the accepted condition of moves the sequence of states at one 
temperature forms a Markov chain. When the chain reaches equilibrium at a particular temperature, the 
temperature is decreased according to some cooling schedule and the procedure is repeated. The algorithm 
terminates when a specified stopping condition is reached. 

The number of iterations in an annealing run appears to be the most critical parameter in annealing, many 
methods have been suggested (their review cold be found in Lee, 1995]). The simplest of them is the geometric 
cooling schedule, where the starting temperature ts, chain length L, temperature decrement, and stopping 
temperature Te are all predefined. 

Multiple folded regular structure realization 

Column folding can be obtained by permuting the rows of an array structure, so it introduces a restriction on the 
order of the rows. That is, if column ci is folded with column cj and placed above it, then all the rows that have 
cross points with the column ci must be placed above those rows that have cross points with the column cj. For 
example, in Figure 1, to fold column x6 above x1, thus rows r2, r3 and r7 should be placed above r1 and r5. 

The restrictions imposed on the order of rows by a list of folded columns can conflict with the row ordering desired 
by another list of folded columns. An unconflicting ordering of rows is decided as optimal if it needs to the 
maximal folding of columns or the minimal number of physical vertical lines. So we should find out such an 
unconflicting ordering of rows. 

 
 

 x1 x1 x2 x2 x3 x3 x4 x4 x5 x5 x6 x6 x7 x7 
 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 
r6 0 0 0 1 0 0 0 1 0 0 1 0 0 0 
r4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
r3 0 0 0 1 0 0 0 1 0 0 0 1 1 0 
r8 0 0 1 0 1 0 0 0 0 0 0 0 1 0 
r2 0 0 0 0 0 0 0 0 1 0 0 1 0 1 
r7 0 1 0 0 0 0 0 0 0 0 0 1 0 1 
r5 1 0 0 0 1 0 0 0 0 1 0 0 0 1 
r1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 

 

 x1 x1 x2 x2 x3 x3 x4 x4 x5 x5 x6 x6 x7 x7 
 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 
r6 0 0 0 1 0 0 0 1 0 0 1 0 0 0 
r4 0 0 0 1 0 0 1 1 0 0 0 0 0 0 
r3 0 0 0 1 0 0 0 1 0 0 0 1 1 0 
r8 0 0 1 0 1 0 0 0 0 0 0 1 1 0 
r2 0 0 0 0 1 0 0 0 1 0 0 1 0 1 
r7 0 1 0 0 1 0 0 0 0 0 0 1 0 1 
r5 1 0 0 0 1 0 0 0 0 1 0 0 0 1 
r1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 

Figure 4. Boolean matrix Bπ induced by the matrix B of Fig.2 Figure 5. Interval matrix Lπ corresponding to Bπ in Fig. 4 

 
As column folding is formulated as a row permutation problem, during the column folding phase the rows of an 
array structure are permuted to ensure some columns could be share the same vertical lines of the folded 
structure using less lines comparing the initial number of columns. To derive the conditions row permutation 
should satisfy to lead to a maximal size column folding, let consider the result of multiple folding of regular 
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structure (Figure 1). It corresponds to some row permutation π that defines the row sequence and is one-to-one 

function of assigning rows of initial matrix B (Figure 2) to horizontal lines: {π(r1), π(r2)..., π(rm)}  → {r6, r4, r3, r8, r2, 

r7, r5, r1}. So the Boolean matrix B will be transformed into the Boolean matrix Bπ (Figure 4) with permuted rows 

that is functionally equivalent to B but correspond the other structure realization. Then, the columns of Bπ will be 

rearranged in top-to-bottom manner and a column partition is resulted describing a folded structure in symbolic 

form. The matrix Bπ defines a graph G = (V, E), where V is the set of columns and two vertices vi and vj are 

connected by an edge eij ∈ E if the appropriate columns ci
π and cj

π intersect (have a 1 in the same row): 

ci ∩ cj ≠ ∅. 

An ordering of rows induced by permutation π is termed as optimal if it induces the maximal folding of columns or, 
as the same, the minimum number of physical vertical lines of the folded structure. It follows from the folded 

structure that there exists column partition Cπ = {С1, С2,..., Сk} concerning to the row permutation π, such that all 

the columns of each component set Сk are mutually compatible and so form the folding list, and Cπ as a folding 

set is realizable. For our example, for the Boolean matrix Bπ we could obtain Cπ = {{c11, c7, c12, c1}, {c4, c5, c6}, 

{c13, c14}, {c8, c3, c9, c2, c10}}. The cardinality k of the partition Cπ defines the width of the row-permuted folded 
structure or the number of packed columns in it. The goal is to find out a row permutation that permits a column 

partition Cπ of minimal cardinality. 

Now let us introduce some notions to formulate the procedure of evaluation of a row permutation π. For a given 

permutation π the regular structure folding is realized by attaching to each vertical line column parts sharing it. 
Such parts correspond to intervals [introduced by Wong, 1988] that are established in the columns of the matrix 

Bπ from the topmost to the lowermost 1’s: lk = [
i

min cik, 
i

max cik, ], where cik is i-th component of k-th column 

having value 1. Such a way the matrix Bπ induces interval matrix Lπ for a given row permutation π. Just the 

intervals will be assigned in the proper way to vertical lines of the folded array structure also need the minimum 

number of vertical lines for the folded structure. When proceeding from Bπ to Lπ the densities dπi of the rows (the 

number of columns intersecting the row dπi) are increased in the general case. Reducing the row densities 
promotes placing more columns on a single physical line, and that can be done by proper permutation of rows. 

For our example, we have the interval matrix Lπ shown in Figure 5 (where the initially given 1’s are represented in 

thick print in contrast to augmented 1’s that are of regular type) and following the collection of intervals: 

Lπ = {[7,8], [6,6], {[4,4], {[1,3], {[4,7], {[8,8], {[2,2], {[1,3], {[5,5], {[7,7], {[1,1], {[3,6], {[3,4], {[5,7]}. 

To find out the size of folding associated with the permutation π let consider the compatibility relation between 

intervals: a pair of intervals li, lj are compatible if they do not intersect (the appropriate columns of the matrix Lπ 

do not have a 1 in the same row): li ∩ lj = ∅. Compatible intervals may be assigned the same vertical line in a 
proper layout. The inverse relation is the incompatibility relation that can be represented by the intersection graph 

http://en.wikipedia.org/wiki/Intersection_graph�
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G = (V, E), where the vertices of V correspond to intervals and (vi, vj) ∈ E if and only if li and lj intersect, 

(li ∩ lj ≠ ∅). The graph is an interval graph. Interval graphs are a kind of the chordal graphs [Hsu, 1999] having 
some remarkable properties reducing NP-complete problem of searching of realizable folding sets to a solvable in 
polynomial-time. 

It have been stated that the size of folding (associated with row permutation π) equals to the chromatic number of 
an interval graph G = (V, E) and the color classes correspond to collections of intervals each of which can be 
feasibly assigned to a line. Then the chromatic number of the interval graph is equal to the maximal degree of 

vertices of the graph G. In other words the size of folding associated with a row permutation π can be found 

directly from the corresponding interval matrix Lπ – it is the maximal density of the matrix rows (denoted later as 

dπ) [Wong, 1988]. And further a minimum size folding induced a row permutation π can be found solving 1) the 

task of graph coloring: the color classes of an interval graph may be obtained by applying a simple linear-time 
algorithm to the vertices of an interval graph G = (V, E) [Golumbic, 1977] , or 2) the task of interval ordering by 

applying to the collection Lπ of intervals a special simple “Left Edge Algorithm” [Hashimoto, 71]. 

The interval graph G = (V, E) for our example is depicted in Figure 6. The graph chromatic number equals 4. The 

appropriate ordered column folding set is Lco = {<c11, c7, c12, c1>, <c4, c5, c6>, <c14, c13>, <c8, c3, x9, c2, c10>, it is 
implementable and the corresponding folded regular structure is given as a part of Figure 1, b. 

Thus from above, it can draw a conclusion that any row permutation is evaluated in a simple way: the value of dπ 
is the numerical value of the row permutation quality. And after choosing the best row permutation, the partition of 
the columns set on a collection of column folding lists is fulfilled by linear-time algorithm. 

 

 

 

Figure 6. Interval graph G = (V, E) Figure 8. PLA multiple folded form subject to signal routing lines 
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Multiple folding via the method of simulated annealing 

Here we consider how to solve the problem of multiple column folding using the method of simulated annealing. 
During the column-folding phase, the rows of an array structure are permuted to minimize the area due to folding 
some columns. In that case array structure will have fixed height and decreased width. The aim of the column-
folding phase is to minimize the width of the structure. Indirectly, to minimize the width, it would be necessary to 
minimize the number of the columns. The goal is to obtain an ordering of rows that will allow maximal packing the 
columns.  

Figure 7 shows how the realized simulated annealing folding algorithm works. The current row order π in the 

matrices Bπ and Lπ is a state in the process of simulated annealing. And the starting state is the initial row order 

{r1, r2,…, rm}. A move is a permutation of a pair of columns and it changes the current state for some neighbor 

one. The temperature schedule is represented by geometric series where starting value t0 = λt n and each 
successive temperature value is obtained by multiplying the previous one by some constant value that is 0.85 that 
is less than 1 and so the temperature values approach zero in the limit. Here n is the number of columns, the 

value λt < 1 is taken as 0.8 (for it experimental results indicate good results obtained) [Wong, 1988]. The number 

of iterations (moves) at each temperature is accepted as r0 = 2 λr Cm2, Cm2 = m (m–1)/2 is the number of 
2-combinations (the number of possible neighbor states) – the number of all possible moves where the value 

λr < 1 is taken as 0.5 [Van Laarhoven, 1987], m is the number of rows. 

Each trial state is evaluated with a cost function Qπ. The goal of an annealing folding algorithm is to find out the 

interval matrix Lπ with minimum of maximal density: max of dπ → min. Taking into account that the row 

permutation and the corresponding to it maximal density are random quantities, the cost function Qπ is expressed 
as quadratic  one: 

Qπ = (dπ)2 + ∑ ππ
λ

i id
m

2)( , (2) 

where λ is accepted to be 0.5 reducing the influence of extra item ∑ π

i id
m

2)(
1  by a half. The trial is successful if 

the cost value of the current state is less than that of the best previous state. The simulated annealing process is 
terminated if the number of successful steps at a current temperature is less than 5% of all moves or the 
temperature became low enough. 

B ← B0    B0 – initially given Boolean matrix presenting regular structure under 
folding 
π ← π0    π0 – initial state, i.e. initial order of rows: π0 = {c1, c2, …, cm} 
Lπ ← Lπ0    Lπ

0 – interval matrix Lπ corresponding to the row permutation π0 
t ← t0     t0 – starting temperature: t0 = 0.8 n 
rt ← r0     r0 – the number of iterations (moves) at starting 
temperature r0 = m (m–1)/4 
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Qπ ← Qπ
0    Qπ

0 – the cost function that is the row permutation quality equaled to 
dπ –  

(maximal number of 1’s in a row of the interval matrix Lπ) 
while ((δt ≥ 0.05 rt) ∨ (t ≠ 0)) do   not stopping criteria( ) 

begin 
i ← 0    i is the serial number of iteration at a current temperature t 
δt ← 0    δt is the number of successful steps at a current temperature 
t 

while (i < rt) do   for t = tconst 

begin 
π*← generate random neighbor of π  
B* ← Bπ*    building Boolean matrix B for π* 
Lπ* ← Lπ(π*)   building interval matrix for π* 
Qπ* ← Qπ(π*)   evaluating Lπ* 
 ← Qπ* – Qπ 
if (( ≤ 0) ∨ (random(0,1) < e–/t)) then 

π ← π*; B ← Bπ*; Qπ ← Qπ*;  
δt ← increase the number of successful steps(δt) 

end while 
t ← reduce temperature(t);  new temperature will be 0.85 of current value 

end while       the best solution is obtained 
 

Figure 7. Simulated annealing folding procedure 

 

Constrained multiple folding 

The discussed procedure of multiple folding will be modified when some constraints on the form of folded 
structure are imposed. Such folding constraints can be divided on the following basic groups. 

1. Structure-defined constraints. This class of constraints is defined by an array structure type in use. For 
example, use of PLA forces to take into consideration that its layout consists of AND-plane and OR-plane. 

2. Input/Output constraints. This class of constraints depends on the environment in which the folded structure 
should be placed. For example, these can be the ordering of input/output directions, relative positions of 
input/output lines, grouping of input/output lines. 

3. Electrical constraints. This class of constraints forces to limit the folding type. For example, it could be only 
simple or bipartite folding. 
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4. Physical Constraints. This class of constraints concerns to input lines carrying a signal and its inversion. For 
example, the appropriate array structure columns (or rows) may not share the line, so they cannot be folded, and 
sometimes they should be placed to each other as close as possible. 

Further we show how we take proper account of some constraints imposed on folding demonstrating on the 
example of simple folding and PLA folding. 

 

PLA folding via the method of simulated annealing 

A PLA realizes a collection of Boolean functions in disjunctive normal form. It is a two-dimensional array 
consisting of an AND-plane and OR-plane. Its vertical lines are assigned with the input variables (and their 
complements) and output variables. Inputs run vertically through the AND-plane that generates signals on its 
rows, which are used as inputs to the OR-plane. The PLA folding allows some its columns to share a vertical line 
(or rows to share a horizontal line). An example of the PLA structure and its free folded form is shown in Figure 1. 
Here, a dot means placing a transistor on a cross point of vertical and horizontal lines. 

PLA layout has structure-defined constraint that disallows a column of the AND-plane to share the same vertical 
line with a column of the OR-plane. Then, any physical realization of a folded PLA must ensure inputs/outputs be 
connected to the PLA outside. In [Wong, 1988] two possible architectures of implementation of routing lines 
carrying input/output signals to outside (with the help of horizontal auxiliary connection lines) and the modification 
of the simulated annealing process are shown. 

So, PLA multiple folding is the constrained multiple folding of an array structure. It comes easily to take into 
account the first constraint when formulating the simulated annealing procedure. In this case the interval matrix 

Lπ consist of two column submatrixes corresponding to the AND- and OR-planes, and we should distinguish 

between input dπini and output dπouti densities of the matrix Lπ rows. Then we construct two interval graphs 

Gin = (Vin, Ein) and Gout = (Vout, Eout) for the AND- and OR-planes. And the folding size associated with a row 

permutation π equals the sum of chromatic numbers of these graphs or it equals the maximal density dπ that is 

calculated as the sum of maximal input dπin and output dπout densities. Thus the simulated annealing procedure for 

solving the task of such constrained multiple folding distinguishes from the above formulated one only with the 

calculating maximal density dπ and accordingly the cost function Qπ. 

In exactly the same way we can take into account the second constraint (concerning signal input and output), it is 
made by means of augmenting intervals in a proper way the structure have place to feed signals to its inputs and 
from its outputs. Thus we take a proper account of increasing interval lengths on the step of transforming matrix 

Bπ into the interval matrix Lπ. The folded form of PLA from Figure 1,a that takes into account the routing lines is 

depicted in Figure 8. 
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Simple folding via the method of simulated annealing 

Now we consider how to take into account more complex constraints – electrical constraints resulted to limit the 
folding type, for example, it could be only simple folding. Remember that folding is called simple if utmost two 
columns (rows) are allowed to share a single physical vertical (and/or horizontal) line. 

Simple column folding has an evident advantage over multiple columns folding because external signals could 
connect to the folded structure either from the top, or the bottom of a folded structure because there is at most 
one break in any column. This simplifies routing signals, in addition, despite multiple folding might result in larger 
area reduction, simple folding allows reduce occupied routing area. 

To take into account the peculiarity of simple folding in [Wong, 1988] it is proposed to use the same annealing 
schedule as for multiple folding but with other cost function (2). The function value depends on the matching 
number of undirected graph of pairwise compatibility (foldability) of PLA structure columns. Thus, at each 
simulated annealing iteration, we have to make the laborious procedure of compatibility graph construction and its 
matching number computation. 

We propose to reduce the laboriousness of simple folding via simulated annealing method thanks to single 
implementation of the mentioned procedure of compatibility graph construction and its matching number 
computation. That cannot allow to obtain maximum folding in some cases but taking into account that simulated 
annealing method is a heuristic method that does not guarantee the optimum, the proposed idea is good enough. 

The main point is based on the heuristics that we can get a good simple folding on basis of a good multiple 
folding. Thus, first we find out the best row permutation of array structure under folding using the proposed above 
procedure of multiple folding via the method of simulated annealing. Then we don’t find array structure multiple 
folding itself but we will search for its best simple folding. 

So, let we have now row permutation π and the corresponding interval matrix Lπ (for the considered example it is 
shown in Figure 5). Let remember two intervals li, lj are compatible if they do not intersect, a pair ci, cj of 
corresponding columns are foldable and may be assigned the same vertical line in a proper layout. Let H = (V, E) 

be an undirected graph, where the vertices of V correspond to intervals and (vi, vj) ∈ E if and only if li and lj don’t 

intersect, (li ∩ lj = ∅). The size of simple folding associated with row permutation π equals to the matching 

number of the graph H = (V, E) and the matching corresponds to collections of folding pairs. 

A matching M in a graph H is a set of pairwise non-adjacent edges; that is, no two edges share a common vertex. 
Each edge in M defines a folding pair, and a set M specifies a folding set. Correspondingly, a maximum matching 
(that contains the largest possible number of edges) gives a folding set of maximum size. The number of columns 
of folded such a manner structure is equal the matching number plus the number of unmatched vertices of the 
graph H. 

http://en.wikipedia.org/wiki/Non-adjacent�
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For our example the graph H = (V, E) (corresponding to interval matrix Lπ in Figure 5) is shown in Figure 9. Here 

all graph edges, but matching, are shown as thin lines and edges of the matching edges are shown as heavy 
lines. The folding variant of PLA shown in Figure 1,a is given in Figure 10. 
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Figure 9. Compatibility graph H = (V, E) Figure 10. PLA simple folded form 

 

Experimental results 

The simulated annealing algorithms for multiple and simple folding (have been described above) were formulated 
for one of the types of regular structures, PLA structure, and were realized using Visual C++. Then they were 
compared on the stream of benchmarks [Berkeley, 2006].The objectives of performed computer experiments are 
to state: 

1) the degree of PLA area reduction that could be achieved by both simple and multiple folding; 

2) the dependence of degree of PLA area reduction on PLA AND- and OR-planes sparseness; 

3) the comparative evaluations of two types PLA folding: simple and multiple ones. 

As the basic parameter of PLA structures governed the degree of PLA compaction the density of PLA AND- and 
OR-planes was accepted. The density of PLA planes is the percent of active transistors in them (in relation to 
number of all transistors), or the PLA density is the ratio between the number of unit elements of Boolean matrix 
B (Figure 2) to whole number of its components.  

The results of the testing are given in Figure 11; at the bottom of the Figure, in X-direction, bench PLA names are 
placed accompanied their densities. In Y-direction there are values of PLA area compaction expressed in 

percentage, that is %
n
k , where n is the number of PLA columns under folding and k is the number of the folded 

PLA columns. 
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Experimental results allow to draw a conclusion concerning the domains of applicability of simple and multiple 
folding. The results indicate that: 

1) multiple folding gives better results for sparse PLA cases, or numerically in cases when PLA density is less 
than 20%; 

2) simple folding gives better results for dense PLA cases, or numerically in cases when PLA density is more than 
25%; 

3) in the range of PLA densities 20 – 25% multiple and simple PLA foldings are competed with each other. 
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Figure 11. The results of experimental investigations of multiple and simple folding using simulated annealing algorithm 

 

Conclusion 

The problem of reducing the area of the layout of two dimensional array structures is investigated. We consider 
probabilistic heuristic algorithms based on simulated annealing procedure, they are well suited for compacting 
sparse structures having not great percentage of active elements (transistors). 

Simulated annealing folding algorithms are investigated for the case of PLA multiple and simple column folding. 
The results of investigation show that 1) simulated annealing can give enough good results in the sense of area 
reduction, and 2) simple folding behaves not worse comparing with multiple folding on the stream of PLAs have 
been considered allowing for finding often solutions with the same cost function. 
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