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CLASSIFICATION OF HEURISTIC METHODS IN COMBINATORIAL OPTIMIZATION 

Sergii Sirenko 

Abstract: An important for the scientific as well as the industrial world is the field of combinatorial optimization. 
These problems arise in many areas of computer science and other disciplines in which computational methods 
are applied, such as artificial intelligence, operation research, bioinformatics and electronic commerce. Many of 
combinatorial optimization problems are NP-hard and in this field heuristics often are the only way to solve the 
problem efficiently, despite the fact that the heuristics represent a class of methods for which in general there is 
no formal theoretical justification of their performance. A lot of heuristic methods possessing different qualities 
and characteristics for combinatorial optimization problems were introduced. One of the approaches to the 
description and analysis of these methods is classification. In the paper a number of different characteristics for 
which it is possible to classify the heuristics for solving combinatorial optimization problems are proposed. The 
suggested classification is an extension of the previous work in the area. This work generalizes existing 
approaches to the heuristics’ classification and provides formal definitions for the algorithms’ characteristics on 
which the classes are based. The classification describes heuristic methods from different viewpoints. Among 
main considered aspects is decision making approach, structure complexity, solution spaces utilized, memory 
presence, trajectory-continuity, search landscape modification, and adaptation presence.   

Keywords: combinatorial optimization, classification of methods, heuristics, metaheuristics. 

ACM Classification Keywords: G.1.6 [Numerical Analysis] Optimization, I.2.8 [Artificial Intelligence]: Problem 
Solving, Control Methods, and Search – Heuristic methods, General Terms: Algorithms. 

Introduction 

 

Development of the combinatorial optimization (CO) field has reached the level of generalizing the accumulated 
primary knowledge. This includes devoting more attention to the study of existing approaches, to the analysis of 
their similarities, differences, and conceptual features enabling performance increase. The similarities can be 
captured through formulation of generalized search procedures, specifying components of which one can outline 
distinct classes of algorithms. The distinguishing of key differences can be done through a classification.  

Heuristics represent a class of methods for which in general there is no formal proof of their 
performance/completeness. We will under “heuristic” only approximate methods, though a number of exact or 
approximation methods are also based on some “heuristic rules”. But many of the practically relevant CO 
problems are NP-hard [Garey and Johnson, 1979; Papadimitriou and Steiglitz, 1982; Korte and Vygen, 2006] and 
the best exact algorithms known so far for these problems have exponential time complexity. In this situation 
approximate algorithms and, in particular, heuristics may be the only way to get solutions of a “good” quality in a 
reasonable amount of time.   

Work concerning classification of heuristics in CO and their subclasses include [Stützle, 1998; Vaessens et al., 
1998; Birattari et al., 2001; Blum and Roli, 2003; Sergienko and Shilo, 2003; Leont'ev, 2007; Talbi, 2009]. In this 
paper known approaches to the heuristics classification are generalized and extended. The classification is based 
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on defining characteristics by which the heuristics can be classified. These characteristics can be divided into 
three categories: structure characteristics, search process characteristics and performance characteristics. 

Algorithms for static CO are considered here, leaving dynamic, stochastic, and multiobjective problems out of the 
scope of the work. Parallel implementation issues are also beyond consideration.  

The remainder of this paper is structured as follows. Next section states definitions and notations used. Then a 
proposed classification divided into categories is presented and discussed in detail. Last section concludes this 
paper and sets out some issues for future research. 

Definitions and Notations  

 

Objects (solutions) that are considered in the CO problems typically are integer numbers, assignments, 
permutations, orderings, or graphs. All of them are generalized by the following definition [Hulianytskyi and 
Sergienko, 2007].  

Definition 1. Consider a set {1,..., }Y m , an at most countable set Z  called base space, and a 

homomorphism :Y Z   that satisfies constraints defined by some predicate  . A triple ( , , )Z    is 

called a combinatorial object. A size of combinatorial object is a power of the set Y . 

For increased readability, the combinatorial object will be denoted simply by  . 

Using as a basis [Papadimitriou and Steiglitz, 1982] we will give the following definition of CO problem (without 
loss of generality we will consider minimization problems).   

Definition 2. A combinatorial optimization problem is a problem of finding *x D X   such that  

( ) ( )*x D X f x f x     (1) 

where X  is a finite (or possible countably infinite) set of combinatorial objects, D X  is a subspace of the 

feasible solutions, and 1:f X    is an objective (cost) function of the problem. *x  is called a globally 

optimal solution or simply an optimal solution.  

In general, X  may consist of the combinatorial objects of different size.  

Many of the heuristics solve problems in a special representation that may differ from initial model. For example, 
in generic algorithms integer solutions can be coded as binary strings. An evaluation function (sometimes called a 
fitness function) that differs from the objective function is often introduced for guiding the search process. These 
choices are “algorithmic-oriented”, because the representation is defined to tune the problem definition with the 
algorithm that will be used to solve the problem [Roli and Milano, 2001]. Further we will consider that the problem 

(1) is solved the representation  ,S g , where S  is a set called a search space, which represents solution 

space, and 1:g S   is an evaluation function. Elements of S  are called candidate solutions. The 

representation can be equal to the initial problem itself: ,S X g f  .  

Another important notions are a neighbourhood structure and a local minimum [Papadimitriou and Steiglitz, 
1982].  

Definition 3. A neighbourhood structure is a mapping : 2SN S  that assigns to every candidate solution 

s S  a set of neighbours ( )N s S . ( )N s  is called a neighbourhood of s .  
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Definition 4. A candidate solution s  is called a locally minimal solution with respect to a neighbourhood 

structure N  (or simply a local minimum) if  

( ) ( ) ( )s' N s f s f s'   . 

The set S  and the neighbourhood structure N  induces a neighbourhood graph  , ,N NG S V  

 ( , ') | ' ( )NV s s s N s  . 

We will also use a notion of a search landscape [Hoos and Stützle, 2005]. 

Definition 5. Given a problem representation  ,S g  and a neighbourhood structure N , the search landscape 

of the combinatorial optimization problem is defined as  , ,S g N .  

Classification of Heuristics in Combinatorial Optimization 

 

In the last decades tens of different heuristic approaches possessing certain qualities and characteristics were 
introduced to solve a CO problems. Basically all computational approaches for solving hard CO problems can be 
characterised as search algorithms [Hoos and Stützle, 2005].  For marking out different features of these CO 
methods this classification is suggested. The fundamental idea behind the search approach is to iteratively 
generate and evaluate candidate solutions. In the context of the algorithms operating at each iteration with only 
one candidate solution generation and acceptance of neighbour candidate solution is called a move. 

In [Stützle, 1998] metaheuristics were suggested to classify by whether they are trajectory or discontinuous, by 
the number of operated solutions, by memory usage, by the number of neighbourhood structures, by changes to 
the objective functions, and by source of inspiration (Table1). More formal classification of local search algorithms 
based on an abstract algorithmic skeleton was suggested in [Vaessens et al., 1998]: the algorithms are divided by 
the number of solution operated at a time and by the number of levels. Levels corresponds to neighbourhoods 
used. Paper [Birattari et al., 2001] repeats the ideas presented in [Stützle, 1998]. Work [Blum and Roli, 2003] 
suggests a similar approach. In [Talbi, 2009] another classification for metaheuristics was presented (Table 2). 

 

Table 1. Classification [Stützle, 1998]  Table 2. Classification [Talbi, 2009] 

Characteristic   Characteristic  

Trajectory methods vs. discontinuous methods  Nature-inspired vs. non-nature inspiration 

Population-based vs. single-point search  Memory usage vs. memoryless methods  

Memory usage vs. memoryless methods  Deterministic vs. stochastic 

One vs. various neighborhood structures  Population-based vs. single-point search  

Dynamic vs. static objective function  Iterative vs. greedy 

Nature-inspired vs. non-nature inspiration   

 

Table 3 lists characteristics by which we propose to classify the heuristics. Structure characteristics reflect 
choices made during designing of the algorithm and they determine characteristics of the rest two categories. 
Search process characteristics describe possible implementation results of previous category characteristics. 
Next category represents results of the theoretical study of heuristics’ performance: a priori and a posteriori 
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performance guarantees and convergence-related properties. On obtaining new theoretical results some 
algorithms may change class membership in this category. 

Heuristics can also be classified by their original source of inspiration. Many of them are actually inspired by 
phenomena occurring in nature. But this characteristic does not reflect essential features of the algorithms and 
was not included in the presented classification. 

 

Table 3. Characteristics by which the heuristics can be classified 

Category Characteristic  

Structure characteristics 

Decision making approach 

Structure complexity 

Solution spaces utilized 

Memory presence  

Search process 
characteristics 

Trajectory type  

Search landscape modification 

Adaptation/learning presence 

Problem model presence 

Performance 
characteristics  

Performance guaranties presence 

Convergence-related properties  
 

 

It is hardly possible to state their place in the classification for all of the suggested algorithms so in the paper we 
discuss only the most prominent and exemplifying methods. Besides that many of the state-of-art CO algorithms 
are hybrid in some sense, so “standard” implementations of algorithms are mainly considered. Where possible 
both references to the early papers and to the recent surveys of methods/algorithms are provided. It also should 
be noted that this classification emphasizes differences between heuristics, but don’t revoke their similarities. 

Structure Characteristics 

Decision making approach. First of all we will distinguish different heuristics by whether they are stochastic or 
deterministic (Table 4), that is whether or not decision making (e.g., generating or selecting of the candidate 
solution from a neighbourhood) is randomized in the algorithm. In deterministic algorithms, using the same initial 
solution will lead to the same final solution, whereas in stochastic metaheuristics, different final solutions may be 
obtained from the same initial solution. Simple Greedy Algorithms [Khuller et al., 2007] and standard Local 
Search [Sergienko, 1964; Papadimitriou and Steiglitz, 1982] are examples of deterministic methods. Greedy 
Algorithms sequentially add by some rule components to partial solution until a complete solution is constructed. 
Local Search starts from some initial complete solution and iteratively replaces it by better solution (in the sense 
of the objective/evaluation function) choosing it from the neighbourhood of a current solution. Simulated 
Annealing [Kirkpatrik et al., 1983; Aarts et al., 2007] is a well known stochastic algorithm, which extends Local 
Search by enabling moves to worse solutions. Candidate solutions are chosen according to the parametric 
probabilistic rule that depends on a solution quality.  

Many of the state of the art heuristics are stochastic [Handbook of Applied Optimization, 2002; Hoos and Stützle, 
2005; Handbook of Approximation Algorithms and Metaheuristics, 2007; Talbi, 2009]. 
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Table 4. Classification by decision making approach 

Class Examples 

Deterministic algorithms 
Local Search [Sergienko, 1964; Papadimitriou and Steiglitz, 1982] 

… 

Stochastic algorithms 
Simulated annealing [Kirkpatrik et al., 1983; Aarts et al., 2007],  

… 

 

Structure complexity. Classifying heuristics by complexity of a structure, we distinguish simple algorithms 
(heuristics), hybrid algorithms (hybrid heuristics), metaheuristics, hybrid metaheuristics, and hyperheuristics 
(Table 5).   

A metaheuristic shortly can be defined as generic technique or approach that is used to guide or control the 
underlying problem-specific heuristic method in order to improve its performance or robustness [Hoos and 
Stützle, 2005]. The term metaheuristic was first introduced in [Glover, 1986]. The metaheuristics are general 
optimization methods that can be adopted to many problems or problem classes through defining problem-
specific components. This usually requires less work that developing a specialized heuristic from scratch. 

A hybrid heuristic is such combination of two or more simple algorithms (heuristics) that do not induce a 
metaheuristic. For example, it can be sequential or parallel execution of the algorithms [Zhuravlev, 1977; 
Bertsekas et al., 1997]. Hybrid metaheuristics are methods that combine components from two or more 
metaheuristics. Metaheuristics can also be hybridized with exact methods, specialized techniques or other 
operation research procedures. Also we will regard as hybrid metaheuristics a cooperative multiagent 
procedures, where agents are individual methods (metaheuristics, exact or specialized algorithms etc.). 
Classification of hybrid metaheuristics is presented and discussed in detail in [Raidl, 2006]. 

Hyperheuristics is a new developing class of methods aimed to solve wider classes of various problems without 
been special tuned for each problem or problem subclass, as, for example, is in the case of metaheuristics. 
Despite the significant progress in building search methodologies for a wide variety of application areas so far, 
they still require specialists to integrate their expertise in a given problem domain. For detailed description of 
hyperheuristic approaches see [Burke et al., 2003; Ozcan et al., 2008].  

 

Table 5. Classification by structure complexity 

Class Examples 

Simple algorithms (heuristics) 
Greedy Algorithms [Khuller et al., 2007], 

… 

Hybrid algorithms  

(hybrid heuristics) 

Sequential execution of heuristics [Zhuravlev, 1977; Bertsekas et al., 1997], 
… 

Metaheuristics 
Ant Colony Optimization [Dorigo et al., 1991; Dorigo and Stützle, 2004],  

Memetic Algorithms [Moscato, 1989; Moscato and Cotta, 2007],  
… 

Hybrid metaheuristics  [Raidl, 2006] 

Hyperheuristics [Burke et al., 2003; Ozcan et al., 2008] 
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Though classification by the complexity of the structure is important, it is hardly possible to distinguish algorithms 
strictly by this characteristic due to the absence of generally accepted and formal definition of terms 
“metaheuristic” and “hyperheuristic”. For example, Simulated Annealing some authors consider as metaheuristic 
and some as an simple algorithm, as its difference from Local Search is minor even if compared to such a 
“simple” metaheuristic as Iterated Local Search [Lourenço et al., 2002]. In Iterated Local Search method the 
subordinate Local Search routine is iteratively restarted from perturbated local optima obtained at previous 
iterations. This enables to overcome one of the major drawbacks of standard Local Search: stopping in a local 
optimum, which is not always a global optimum. 

Solution spaces utilized. We will outline by the type of solution spaces utilized a class of sequential 
(constructive, greedy) algorithms. These methods generate (construct) candidate solution from scratch by 
sequentially adding solution components. Solution construction can be seen as a search process in the problem 
representation that is extended by partial solutions. The search stops when a complete (feasible) solution is 
reached. If we assume that all candidate solutions are of the same size m  than this extended search space can 

be represented using notations of Definitions 1 and 2 as following   

 

1,...,

,

{ : , , }, 1,..., 1,

,

i
i m

i
i i i i

m

S X

X Y Z Y Y Y i i m

X X






     




 (2) 

 

where i  is a combinatorial object that satisfies constraints defined by a predicate i  and the following 

conditions hold: i) 1i i  , 2,..., 1i m  , ii) 1m  . 

For example, the Nearest Neighbour Heuristic for the Traveling Salesman Problem [Hoos and Stützle, 2005] 
sequentially adds to a current partial tour the shortest arc that don’t make the tour infeasible. 

On the contrary, iterative (perturbative) algorithms (Table 6) perform search in the space of complete candidate 
solutions. They are naturally divided in two subclasses by the number of candidate solutions operated at a time: 
single-point and population-based algorithms [Stützle, 1998]. In the single-point algorithms only one candidate 
solution is generated and evaluated at each iteration. These are such methods as Simulated Annealing, G-
algorithm [Hulianytskyi, 1991], Tabu Search [Glover, 1986; Glover and Laguna, 1997], Variable Neighbourhood 
Search [Hansen et al., 2008], Variable Depth Search [Hoos and Stützle, 2005], Dynamic Local Search [Hoos and 
Stützle, 2005], Iterated Local Seach, GRASP [Feo and Resende, 1989; Pitsoulis and Resende 2002], and others. 
These algorithms are often called trajectory because search process of most of them represents continuous 
trajectory on the neighbourhood graph. The concept of trajectory-continuity is discussed below.   

Population-based algorithms manipulates at every iteration a set of candidate solutions. There are two major 
paradigms to which most of the population-based heuristics belong. Evolutionary Computation [De Jong, 2006; 
Fogel, 2006; Leguizamón et al., 2007] is one of the most prominent heuristic classes that has been inspired by 
concepts from biological evolution. Evolutionary methods used for CO problems include Genetic Algorithms 
[Holand, 1975; Fogel, 2006], Memetic algorithms [Moscato, 1989; Moscato and Cotta, 2007], Estimation of 
Distribution Algorithms [Larrañaga and Lozano, 2002]. There are also several evolutionary related approaches: 
Scatter Search [Glover et al., 2004], Artificial Immune Systems [Cutello and Nicosia, 2002; de Castro and Timmis, 
2002]. In the CO context Swarm Intelligence [Bonabeau et al., 1999; Kennedy et al., 2001; Stigmergic 
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Optimization, 2006] represents the systems composed of many individuals that coordinate using decentralized 
control and self-organization. 

 

Table 6. Classification by solution spaces utilized 

Class Examples 

Sequential (constructive) algorithms 
Nearest Neighbour Heuristic [Hoos and Stützle, 2005] 

… 

Iterative 
(perturbative) 
algorithms 

Single-point        
algorithms 

Simulated Annealing [Kirkpatrik et al., 1983; Aarts et al., 2007],  
G-algorithm [Hulianytskyi, 1991]  

… 

Population-based 
algorithms 

Genetic Algorithm [Holland, 1975; Fogel, 2006], 
Discrete Particle Swarm Optimization [Clerc, 2006],  

H-method [Hulianytskyi and Sergienko, 2007]  
… 

 

These methods include Ant Colony Optimization [Dorigo et. al., 1991; Dorigo and Stützle, 2004], Particle Swarm 
Optimization [Eberhart and Kennedy, 1995; Kennedy et al., 2001; Clerc, 2006], Stochastic Diffusion Search [De 
Meyer et al., 2006], methods inspired by bee colonies behaviour [Teodorovic et al., 2006; Bitam et al., 2008; 
Talbi, 2009], and others. Among methods that are not closely related to these two paradigms are Frontal 
Optimization Algorithms [Sergienko and Hulianytskyi, 1981], Cross-Entropy method [Rubinstein, 1999; Rubinstein 
and Kroese, 2004], and H-method [Hulianytskyi and Sergienko, 2007].  

Sequential heuristics typically are the fastest solution methods for CO, but they often return solutions of inferior 
quality comparing to the iterative methods. In practice they are used for very large size problems or for problem 
with costly solution evaluation. Sequential algorithms are built-in in iterative methods for generating initial 
candidate solution(s) (in fact, random generation of initial solution also can be seen as construction process). 
They also can be incorporated in iterative methods in a more sophisticated way. For example, in GRASP and Ant 
Colony Optimization subordinate stochastic constructive procedures plays a key role. Iterated Greedy heuristic 
(see, for example, [Jacobs and Brusco, 1995; Ruiz and Stützle, 2007]) iterates greedy construction procedure, 
alternating between phases of destructive and constructive search similarly to it is performed with local search 
and perturbation phases in Iterated Local Search. Coined in [Roli and Milano, 2001; Gendreau and Potvin, 2005] 
frameworks for the (meta-) heuristics describe from different points of view the contribution of construction and 
improvement phases to the search process. 

Memory presence. A very important feature to classify heuristics is the presence of a memory (Table 7). Memory 
is a set of special variables in which information about the performed search process is stored. There are several 
different ways of making use of memory (Table 8).  

Memory can be used simply to store some information, which will be returned after by the algorithm (e.g. best 
found so far candidate solutions). This mechanism is used in almost every implementation of modern heuristics. 

Search experience also can be used for guiding the search process. This type of memory can be short term or 
long term [Blum and Roli, 2003]. The former usually keeps track of recently performed moves, visited solutions or, 
in general, decisions taken. The latter is usually an accumulation of synthetic parameters about the search.  
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Table 7. Classification by memory presence  

Class Examples 

Algorithms without memory  
G-algorithm [Hulianytskyi, 1991]  

… 

Algorithms with memory 
Tabu Search [Glover, 1986; Glover and Laguna, 1997] 

… 

 

Table 8. Memory utilization / functions 

Type Examples 

Storing  Keeping best-so-far solution  

Guiding 

Short term 
Tabu list in Tabu Search [Glover, 1986; Glover and Laguna, 1997] 

… 

Long term 
Penalties in Guided Local Search [Voudouris and Tsang, 1995; Voudouris 

and Tsang, 2003] 
… 

Adaptive 
Pheromone values in Ant Colony Optimization [Dorigo and Stützle, 2004]  

 

 

Tabu list in Tabu Search is one of examples of short term memory. In Guided Local Search [Voudouris and 
Tsang, 1995; Voudouris and Tsang, 2003], which is an example of specific Dynamic Local Search algorithm, in 
order to escape form local minimum penalties are introduced for the components of encountered local optimums. 
A set of penalty values correspond to long term memory. Some algorithms use both short and long term guiding 
memory (for example, specific Tabu Search variants [Glover and Laguna, 1997]). Guiding function of the memory 
is closely connected with a search landscape modification, which is discussed below. Majority of algorithms 
possessing this memory type make changes to the search landscape during their execution.  

The last and the most important function of the memory is adaptation. Usage of search history for adaptation is 
discussed below.  

In fact, current candidate (or partial) solution(s) can be seen as the most simple implementation of the memory. 
This memory is inherent in almost any heuristic (except of a random search) and is used for solution generation 
and other activity, depending on the complexity of the algorithm. While a population of candidate solutions such 
as in Genetic Algorithms is considered as a kind of memory [Stützle, 1998; Taillard et al., 2001; Gendreau and 
Potvin, 2005], current solution in a single-point algorithm is not accepted as a memory structure. Such algorithms 
as Simulated Annealing or GRASP in their standard implementation are generally referred to memoryless. This is 
due to eventually absent exploitation of the search history is these algorithms. To provide a formal basis for 
districting memory using and memoryless algorithms we introduce the following definitions.  

Definition 6. Given a deterministic search algorithm that generates at every iteration I   a set of candidate 

solutions IP S . The algorithm is called an algorithm with memory if does not exist a function 

: 2 2S SSTEP   such that   

1 ( ), 1I IP STEP P I   . 
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Definition 7. Given a stochastic search algorithm that generates a set of candidate solutions IP S  at every 

iteration I   and is represented as a stochastic process with states IP . The algorithm is called an algorithm 

with memory if  

1 1 1 1 1 1, , : Pr( ,..., ) Pr( )I n n n n n n n nS S I n P S P S P S P S P S               . 

In other words, the stochastic algorithm is memory using if the Markov property does not hold for the respective 

stochastic process with states IP . However, it does not mean that the algorithm behavior cannot be modeled as 

a Markov process: stochastic process with states ( , )I IP M , where IM  is a memory state at iteration I , will be 

a Markov chain. 

Some memory structures can perform more than one function. For example, in Iterated Local Search variants the 
best solution found so far can be used as a starting point for the perturbation step. In this case the best solution 
performs both storing and guiding functions.  

The use of memory is recognized as one of the fundamental elements of a powerful (meta-)heuristic. The 
Adaptive Memory Programming framework [Taillard et al., 2001] has been suggested to refer to algorithms that 
use some kind of memory and to identify common features among them. 

Search Process Characteristics 

 

Trajectory type. In [Stützle, 1998] there was suggested to characterize algorithms by whether they follow one 
single search trajectory corresponding to a closed walk on the neighbourhood graph or whether larger “jumps” in 
the neighbourhood graph are allowed. We introduce the following formal definition of this characteristic.  

 

Definition 8.  Given a set of neighbourhood structures 1{ ,..., }LN N  and an algorithm that operates at every 

iteration I   a set of candidate solutions IP , the algorithm is called trajectory-continuous if for any 2I    

1 1

1
1

( )
I I

L

I j I
j x P

P N x
 


 

   (3) 

If the set IP  consist of one element Ix  only, that is the algorithm is a single-point, condition (3) is equivalent to 

the following: 1 1{ ,..., }: ( )I I
L I IN N N x N x    .  

 

Definition 9.  Any algorithm that do not meet condition (1) is called trajectory-discontinuous with respect to the 

set of neighbourhood structures 1{ ,..., }LN N . 

The trajectory-continuity of a heuristic with respect to the set of neighbourhood structures 1{ ,..., }LN N  means 

that for every generated by the algorithm candidate solution Ix X  there exists a path in an aggregated 

neighbourhood graph 
1 ,...,

{1,..., }

( , )
L jN N N

j L

G S V


   connecting one of the initial solutions and x . As it was 

already mentioned, the search process of a single-point trajectory-continuous algorithm can be represented as a 
single trajectory (path) in the respective aggregated neighbourhood graph. 
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Table 9 lists examples of trajectory-continuous and trajectory-discontinuous algorithms in the context of a single 
neighbourhood structure. Local Search, Tabu Search and Simulated Annealing are typical examples of trajectory-
continuous algorithms with respect to the neigbourhood used in them. Also local search algorithms that perform 
complex moves which are composed of simpler moves may be interpreted as trajectory-continuous [Stützle, 
1998]. Such algorithms are, for example, variable depth methods [Hoos and Stützle, 2005], in particular, the Lin-
Kernighan Algorithm for [Lin and Kernigan, 1973] and algorithms based on ejection chains [Glover, 1996].  

Most of the population-based algorithms are trajectory-discontinuous with respect to any single neighbourhood 
structure. Among exceptions are Frontal Optimization Algorithms [Sergienko and Hulianytskyi, 1981]. A 
modification of this method, which is based on the Local Search, performs a number of parallel local steps with 
respect to predefined neighbourhood structure at every iteration. 

The notion of trajectory-continuity is closely related to the number of neighbourhood structures that are used in 
the algorithm, which will be discussed below in the context of a search landscape modification: algorithms that 
use more than one neighbourhood structure are trajectory-discontinuous with respect to any single 
neighbourhood structure.  

 

Influence on a search landscape. Another characteristic by which the heuristics can be classified is a search 
landscape modification during the search process (Table 10). There are three possibly types of such 
modifications (Table 11): the search space modification, evaluation function modification, and change of a 
neighbourhood structure. 

 

Table 9. Classification by trajectory type (with respect to a single neighbourhood) 

Class Examples 

Trajectory-continuous 
algorithms  

Tabu Search [Glover, 1986; Glover and Laguna, 1997],  
Frontal Optimization Algorithms [Sergienko and Hulianytskyi, 1981],  

… 

Trajectory-discontinuous 
algorithms 

GRASP [Feo and Resende, 1989; Pitsoulis and Resende 2002]  
… 

 

These changes are performed in order to escape from local minimum and to increase the efficiency of the 
algorithm.     

Search space modification. The search space modification is either inclusion or exclusion some candidate 
solutions into it. In Tabu search, the returning to recently visited candidate solutions is forbidden, that is they are 
temporarily excluded from the search space. Other heuristics do not make changes to the search space. 

 

Evaluation function change. Some heuristics modify the evaluation of the single candidate solutions during the 
run of the algorithm. In Breakout Method [Morris, 1993] penalties for the inclusion of certain solution components 
were introduced. This idea was generalized in Dynamic Local Search. In Noisy Methods (see, for example, 
[Charon and Hudry, 1993]) and Smoothing Methods (see, for example, [Gu and Huang, 1994]) evaluation 
function is also changed during the search process. For the review of last two approaches see [Talbi, 2009]. 

Solution construction procedures that are built-in Ant Colony Optimization algorithms may be interpreted as using 
a dynamic evaluation function: in the low level construction procedure partial solutions are evaluated using 
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pheromone values, which are updated at every iteration. At the same time at a high level the pheromone values 
represent a special memory structure, so the algorithm in general uses static evaluation function.  

Tabu Search also can be interpreted as using a dynamic evaluation function: forbidding of some points in a 
search space corresponds to setting the infinitely high evaluation function values. But this interpretation does not 
reflect basic algorithmic idea of this approach. 

 

Table 10. Classification by influence on a search landscape  

Class Examples 

Algorithms that do not modify 
search landscape 

G-algorithm [Hulianytskyi, 1991] 
… 

Algorithms that modify   
search landscape 

Tabu Search [Glover, 1986; Glover and Laguna, 1997], 
Guided Local Search [Voudouris and Tsang, 1995;                      

Voudouris and Tsang, 2003], … 

 

 

Table 11. Types of search landscape modification 

Type Examples 

Search space modification  Tabu Search [Glover, 1986; Glover and Laguna, 1997] 

Evaluation function change 
Guided Local Search [Voudouris and Tsang, 1995;                     Voudouris 
and Tsang, 2003], … 

Neighborhood change 

Search in Pulsating Neighborhoods [Hulianytskyi and Khodzinskyi, 1979],  

Variable Neighborhood Search [Mladenovic and Hansen, 1997], 

… 

 

Neighborhood change. Many heuristics use single neighbourhood structure, which defines allowed moves on a 

neighbourhood graph. Iterated Local Search typically use at least two different neighbourhood structures N  and 

'N : the Local Search starts with neighbourhood structure N  until a local optimum is reached and then a 

perturbation of obtained solution is performed, which can be interpreted as a move in a secondary neighbourhood 

structure 'N . This idea was extended in independently developed Search in Pulsating Neighborhoods 

[Hulianytskyi and Khodzinskyi, 1979] and Variable Neighborhood Search [Mladenovic and Hansen, 1997], where 
neighbourhood structures are systematically changed among a predefined list. Tabu Search also can be 
interpreted as using the dynamic neighbourhoods [Hertz et al., 1995]. 

The solution construction process in Ant Colony Optimization or in GRASP can be interpreted as a search on a 
neighbourhood graph with the set of vertexes defined by (2) and the neighbourhood structure defined as 

1

1 1 1 1
1 1 1, : , ( ) : : , , , 2,..., .

i

i i i i i i i
i i i i i i

Y
X Y Z N Y Z X Y Y i m      



   
  

  
          

  
 

Thus, GRASP and Ant Colony Optimization algorithms with Local Search uses at least two neighbourhood 
structures, switching them between solution construction and improvement phases. Many other hybrid algorithms 
also perform neighbourhood switching during execution.  
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Adaptation/learning presence. We will distinct algorithms that adapt (learn) during the search process (Table 
12). Adaptation (learning) is an ability of the heuristic to adjust its behaviour during (before) the search process. 
This includes dynamically tuning parameter values, automatically selecting subordinate routines, and presence of 
a problem model (Table 13). The field of adaptive/learning approaches for the CO problems is still developing and 
is rather a collection of independent techniques.   

Reactive Search [Battiti and Brunato, 2007] provides a mechanism to include the parameter tuning within the 
algorithm: parameters are adjusted by an automated feedback loop that acts according to the quality of the 
solutions found, the past search history and other criteria. In Reactive Tabu Search [Battiti and Tecchiolli,1994], 
one of the first reactive methods, a period of prohibition is automatically adjusted during the search.   

Automated selecting of subroutines is performed in algorithms that belong to the mentioned above class of 
hyperheuristics.  

Specific adaptation techniques are also developing within individual methods. Examples vary from adaptive 
cooling schedule (dynamical parameter adjust) in Simulated Annealing [Aarts et al., 2007] to dynamical meme 
(subordinate local search routine) selection in Adaptive Memetic Algorithms [Ong et. al., 2006].    

Adaptation can also be achieved through the usage of a special memory structure that represents a model of the 
problem, which is discussed below.     

Mentioned above approaches for adaptation/learning in heuristics do not cover all of the proposed approaches 
and techniques.   

 

Table 12. Classification by adaptation/learning  

Class Examples 

Algorithms without 
adaptation/learning  

Iterated Local Search [Lourenço et al., 2002]   
… 

Algorithms with 
adaptation/learning   

Reactive Tabu Search [Battiti and Tecchiolli,1994], 
Adaptive Memetic Algorithms [Ong et. al., 2006], … 

 

 

Table 13. Types of adaptation 

Type Examples 

Parameters tuning Adjusting tabu tenure in Reactive Tabu Search [Battiti and Tecchiolli,1994], 
… 

Subroutines selecting Hyperheuristics [Burke et al., 2003; Ozcan et al., 2008] 

Problem model presence Model-based search [Zlochin et al., 2004] 

 

Problem model presence. According to the presence of the problem model heuristic algorithms can be 
classified as being either instance-based or model-based [Zlochin et al., 2004] (Table 14). Most of the classical 
search methods may be considered instance-based, since they generate new candidate solutions using solely 
the current candidate solution or the current “population” of candidate solutions. Typical representatives of this 
class are Genetic Algorithms, Simulated Annealing and Iterated Local Search. In model-based search algorithms, 
candidate solutions are generated using a parameterized probabilistic model that is updated using the previously 
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seen candidate solutions in such a way that the search will concentrate in the regions containing high quality 
solutions.  

In model-based methods the tackled optimization problem is replaced by the following continuous maximization 
problem [Zlochin et al., 2004] 

* arg max ( )FW


  , 

where   is a parameter values of the respective model and ( )FW   denotes the expected quality of a generated 

solutions depending on the values of the parameters.  

Well-known model-based method is the Ant Colony Optimization. The distinctive feature of Ant Colony 
Optimization is a particular type of probabilistic model, in which a structure called construction graph is coupled 
with a set of stochastic procedures called artificial ants.  

 

Table 14. Classification by problem model presence 

Class Examples 

Instance-based algorithms 
Simulated annealing [Kirkpatrik et al., 1983; Aarts et al., 2007], 

Genetic Algorithm [Holland, 1975; Fogel, 2006] 
… 

Model-based algorithms 

Ant Colony Optimization [Dorigo and Stützle, 2004], 
Cross Entropy Method [Rubinstein and Kroese, 2004], 

Estimation of Distribution Algorithms [Larrañaga and Lozano, 2002] 
… 

 

Introduced in the field of evolutionary computations the Estimation of Distribution Algorithms [Műhlenbein and  
Paaß, 1996; Larrañaga and Lozano, 2002] may be considered a particular realization of model-based search with 
an auxiliary memory that stores high-quality solutions encountered during the search.  

The Cross-Entropy Method [Rubinstein and Kroese, 2004], originated from the field of rare event simulation, 
where very small probabilities need to be accurately estimated, is another example of model-based search 
algorithm used for CO problems. 

Performance Characteristics 

 

Performance guarantees. Although in general heuristics have no performance guaranties [Handbook of Applied 
Optimization, 2002; Hoos and Stützle, 2005; Handbook of Approximation Algorithms and Metaheuristics, 2007; 
Talbi, 2009], in some special cases or for particular classes of problems some theoretical results can be derived. 
A lot of different performance guaranties definitions were proposed, but all of them can be divided in two classes 
a priori and a posteriori. A priori performance guarantee is a guarantee that follows directly from the algorithm. A 
posteriori performance guarantee is a guarantee that is calculated during the algorithms execution and with 
respect to the obtained solution(s). In [Sergienko et al., 1989] for a special problem subclass a posteriori 
performance guarantee for the Local Search was derived. Some examples for these two classes are shown in 
Tables 15.  
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Convergence-related properties (for stochastic algorithms). A convergence to the globally optimal solution is 
an important property of the stochastic optimization algorithm. But theoretical study of the heuristics is rather 
difficult and rarely provides practically applicable results. A number of convergence and related notions definitions 
were introduced to describe algorithm’s behavior. In the context of CO particularly a convergence in value is 
important.  

 

Definition 9. Let *( )p I  be a probability of a stochastic algorithm for optimization to generate an optimal 

solution at least once at first I  iterations. The algorithm is called convergent in value if  

lim *( ) 1
I

p I


 . 

This property guarantees the algorithm not to be trapped in a suboptimal area of the search space.  Convergence 
in value is equivalent to the probabilistic approximate completeness property and has been proven for Simulated 
Annealing, specific Ant Colony Optimization algorithms, specific Tabu Search algorithms, Evolutionary 
Algorithms, and others [Hoos and Stützle, 2005]. 

Table 16 lists few results on convergence the heuristic methods. As in the case of performance guaranties, for 
many of the well known and widely used stochastic heuristics the practically relevant results on performance are 
still not obtained.  

 

Table 15. Classification by a priori performance guarantee presence  

Class Examples 

Algorithms with performance 
guarantee 

ε-approximate algorithms, Local Search with known lower bound 
[Papadimitriou and Steiglitz,1982;                                 

Sergienko et al., 1989; Handbook of Approximation Algorithms and 
Metaheuristics, 2007; Kochetov, 2008] 

… 

Algorithms without performance 
guarantee 

 [Handbook of Applied Optimization, 2002;   
Hoos and Stützle, 2005; Talbi, 2009] 

… 

 

Table 16. Classification by convergence  

Class Examples 

Algorithms convergent to the 
global solution 

Simulated Annealing [Hajek, 1988], 
Genetic Algorithm with elitism [Rudolph, 1994] 

minACO  [Dorigo and Blum, 2005],  

… 

Do not convergent algorithms 
Standard Genetic Algorithm [Holland, 1975],  

… 

Algorithms without results on 
convergence  

[Handbook of Applied Optimization, 2002;  
Hoos and Stützle, 2005; Talbi, 2009] 

… 

 

Figure 1 summarizes the presented classification and shows relationships between classes.  
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Figure 1. Classification of heuristic methods for combinatorial optimization 
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Conclusion 

Heuristics represent a practically relevant class of incomplete methods for combinatorial optimization problems. In 
the paper the classification of the heuristic algorithms is suggested. It extends and generalizes other approaches 
for the classification of heuristics and their special subclasses in combinatorial optimization. It is based on 
defining characteristics by which the heuristics can be classified. These characteristics can be divided into three 
categories: structure characteristics, search process characteristics and performance characteristics. Structure 
characteristics are decision making approach, structure complexity, solution spaces utilized, memory presence. 
Search process characteristics include trajectory-continuity, search landscape modification, adaptation presence, 
and problem model presence. Performance characteristics consist of a priori and a posteriori approximation 
guarantees and convergence-related properties. Considered aspects of different heuristic approaches are 
general, but for most of them the formal definition are introduced. The exception is the structure complexity: terms 
“heuristics”, “metaheuristic”, and “hyperheuristics”, being widely used, have no formal and at a time generally 
accepted definition.  

Supplementary to the classification is formulation of a generalized (but enough detailed at a time) framework for 
heuristics search in CO. Presented characteristics and classes provides the basis for designing such a 
framework, which can address two problems. First, it can provide a more formal basis for classifying algorithms 
with complex structure. There are a number of algorithms that have shown their practical applicability, but being 
“hybrid” cannot be classified strictly within presented approach. Second, it can serve as skeleton for designing 
new efficient algorithms. Developing the framework for heuristic methods is an important issue for future 
research. 
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