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A GENETIC AND MEMETIC ALGORITHM FOR SOLVING THE UNIVERSITY COURSE 
TIMETABLE PROBLEM 

Velin Kralev 

Abstract: In this paper genetic and memetic algorithms as an approach to solving combinational optimization 
problems are presented. The key terms associated with these algorithms, such as representation, coding and 
evaluation of the solution, genetic operators for the crossing, mutation and reproduction, stopping criteria and 
others are described. Two developed algorithms (genetic and memetic) with defined computational complexity for 
each of them, are presented. These algorithms are used in solving the university course timetable problem. The 
methodology and the object of study are presented. The main objectives of the planned experiments are 
formulated. The conditions for conducting experiments are specified. The developed prototype and its 
functionality are briefly presented. The results are analyzed and appropriate conclusions are formulated. The 
future trends of work are presented. 

Keywords: genetic algorithm, memetic algorithm, university course timetable problem. 

1. Introduction 

1.1. Genetic Algorithms 

Evolutionary algorithms (EA) are based on ideas borrowed from natural processes [1]. These algorithms use a 
set (called population) of possible solutions (called individuals of the population) which are subject to future 
changes in order to obtain the optimal solution, according to a predefined optimality criterion. 

The idea of evolutionary algorithms was presented for the first time in [2] while the idea of genetic algorithms 
(GAs) was presented for the first time in [3]. Later in 1992 the beginning and the genetic programming were 
established [4]. Evolutionary computations date back even earlier [5] where a review of earlier approaches was 
made. 

A particularly efficient subclass of the evolutionary algorithms is a class of the genetic algorithms. In these 
algorithms, the variable is called a gene or allele, while the solution is called an individual or chromosome. 
Solutions must be coded in such a way that genetic operators can be applied. An encoded solution is called 
genotype while a decoded solution is called phenotype. To measure the quality of a solution the term fitness is 
used i.e. a solution with high fitness is a better solution. The set of all solutions is called population. At each 
iteration the genetic algorithm creates a new generation. This process is called reproduction. 

To solve an optimization problem initially several possible solutions are constructed. These solutions are coded 
properly according to the problem being solved, but so that the genetic operators can be applied. The genetic 
algorithms start with a set of initialized population of solutions, which are most often generated randomly. The two 
basic genetic operators are crossover and mutation. The genetic operator "crossover" most often takes two 
solutions (parents) and combines them after which one or more new solutions (children) come as a result. The 
parents are selected from all solutions of the current population. However, the choice of solutions is stochastic 
and is based on solutions with better value of the fitness function. The genetic operator "mutation" changes one 
solution and forms a new one [6]. 
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The space of the possible solutions is a set of points where each point presents a possible solution. The 
searching of solution is equivalent to finding the extremes in this space (minimum or maximum). Since it is not 
always possible to predict the actual optimum, then the best solution found so far, is often regarded as a near-
optimal. 

After performing a number of genetic operations "crossover" and "mutation", some of the solutions in the old 
population with new ones are replaced. Thus the creation of a new population of the algorithm ends. The process 
of creating new generations is repeated until the stopping criterion is satisfied (eg, creating a specific number of 
generations or a certain number of generations after which a better solution than the last best has not been 
found). 

Typically, the process of seeking a solution by genetic algorithm is independent from the scope. The genetic 
operators "crossover" and "mutation" do not know which solution is better and which not. This is determined by 
the fitness function which evaluates each solution. However, it is shown that good results using this approach can 
be obtained [7, 8]. 

1.2. Memetic Algorithms 

There is still a debate associated with genetic algorithms a whether the genetic operator "crossover" plays a 
greater role or the local search process. To solve this dispute, usually the genetic algorithms that use techniques 
for local search are called mimetic algorithms [9]. 

The concept of memetic algorithms was presented for the first time by Moscato and Norman [10]. They describe 
an evolutionary algorithm which uses local search. This idea was later formulated by Radcliffe and Surrey [11] 
who made a comparison between genetic algorithms and mimetic ones. In the mimetic algorithms "meme" is 
regarded as a unit of information that can be self-replicating in a way in which people exchange ideas. The 
"meme" is different from the gene in that when it passes between the individual solutions, any solution adapts 
"meme" in the best possible way, while the gene remains unchanged in this transition [9]. 

The main advantage in using the memetic algorithms is that the space of possible solutions is reduced to the 
subspace of acceptable solutions with local optimum. After the execution of an operation such as mutation in the 
genetic algorithms the new solution may be worse than the original estimate. In the mimetic algorithms through 
the use of local the best location for a given gene (meme) will be always found. Thus the best possible cost for a 
solution will be achieved [9]. 

2. A Genetic and Memetic Algorithms for Solving the University Course Timetable Problem 

In developing the genetic algorithm, the basic techniques used are the crossover and mutation operators. In the 
mimetic algorithm besides the above-mentioned two techniques the method of local search is used as well. Both 
algorithms are similar and therefore in this section they will be presented together showing only the differences 
between them. 

2.1. Generating a Solution Based on Constructive Heuristics 

The basis of the developed genetic algorithm is generating a solution based on constructive heuristics. The main 
goal of this algorithm is given in advance events so that they be placed on the weekly schedule. The pseudo-
code of this algorithm is presented in Fig. 1. 

For each event the algorithm seeks a free timeslot. The aim is to put each event in the weekly schedule so that 

no violation of soft constraints to occur. The computational complexity of the algorithm is square, i.e.  2N , 

where N is the number of events.  
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for each event 

  if the event is fixed then continue to the next event 

  for each timeslot 

    current event set the current timeslot 

    if not possible then continue to the next timeslot 

    if any of the soft constraints is not violated 

    then continue to the next event 

  end 
end 

 

Figure 1. Pseudo-code for generating a solution based on constructive heuristics. 

 

2.2. Generating a Solution Based on Local Search 

The basis of the developed memetic algorithm is generating a solution based on a local search. The main goal of 
this algorithm is with given in advance a ordinance of events to be placed on a weekly schedule in such a way so 
that to obtain the best costs of the generated solution. The pseudo-code of this algorithm is presented in 
Figure  2. 

 

for each event 

  if the event is fixed then continue to the next event 

  for each timeslot 

    current event set the current timeslot 

    if not possible then continue to the next timeslot 

    if not violated any of the soft constraints 

    then calculate the cost of the solution 

    and continue to the next timeslot 

  end 

  put the current event at this timeslot 

  in which the cost of the solution was best 
end 

 

Figure 2. Pseudo-code for generating a solution based on local search. 

 

For each event and each timeslot the algorithm calculates the cost of the generated solution. Once all the 
timeslots have been verified the algorithm sets the current event at this location for the cost of the solution which 

was best. The computational complexity of the algorithm is cubic, i.e.  3N , where N is the number of events.  

2.3. Generating Initialized Population. Genetic Operators of Selection, Combination, Crossing and 
Mutation 

The initialized population of genetic algorithm is created by constructing q solutions through the algorithm 
described above which is based on constructive heuristics. You will note that q is the size of the population that 
remains constant in the process of reproduction. 
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The initialized population of mimetic algorithm is created similarly. Using the method of constructing the solutions 
by local search we generate q solutions. 

At stage "selection" for both algorithms 
2

q
 (i.e. 50%) of solutions in the current population which will play the role 

of parents are chosen. Then 
4

q
 (i.e. 25%) pairs form at random. They will be crossed in order to generate new 

solutions - children. 

The operator of the crossing for both algorithms is the same and plays an essential role. For each pair of parents 
a crossover operator is applied in the following manner: choose two elements (genes) k and r, such that k < r and 

k <> r. They represent the intersection of the parents. By rotation of a range of genes  1,.., 1k  ,  ,..,k r  and 

 1,..,r N   the permutations of events for the two new children are formed of them. In this way of combining 

and coding it is likely to have missing and/or repetitive genes in descendants. The problem is solved by the 
repeated genes which replace the missing ones. 

The mutation operators for both algorithms genetic and memetic are similar. Choose randomly two genes k and r 
which exchanged places. For the algorithms of consideration it was adopted 10% of the children to mutate, i.e. 

10%
2 20

q q         
 . 

2.4. Reproduction Operators of the GA and MA 

Reproduction operators of genetic and memetic algorithm are similar and will be considered together. Pseudo-
code for these operators is presented in Fig. 3. 

 

generate initialize population [genetic or memetic] 

for I := 1 to reproduction count do 

begin 

  delete worst solutions from population 

  distribute parents to pairs 

  crossover [genetic or memetic] 

  mutate [genetic or memetic] 

  sort population 
end 

 

Figure 3. Pseudo-code for reproduction operators of GA and MA. 

 

First an initialized population of genetic and memetic algorithm is generated. Then a sequence of operations is 
performed until it reaches a predetermined number of reproductions. From each population 50% will be deleted of 
those solutions that have worse costs. Then the parents are combined in pairs and crossed. 

Solutions of the children are generated with the method based on constructive heuristics for the GA and the 

method based on local search for the MA. At each step, the relevant method is called 
2

q
 times as the number of 

new solutions. The next step: the mutation operators are executed. The reproduction cycle ends with sorting out 
the solutions with increasing cost. 
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In general, the complexity of the GA is square, and the MA is cubic. The complexity of the algorithms depends 
linearly on the number of reproductions (GenerationCount), i.e. the number of generations that will be generated. 

3. Experimental Results 

Three experiments with the following objectives were made: 

1. To verify the efficiency of the prototype. 

2. To determine the influence of the size of the input data and of the population size on the execution time of 
algorithms. 

3. To determine the impact of population size and number of reproductions on the quality of the solution of the 
different sets of input data. 

4. To make a comparative analysis between the proposed algorithms by comparing the performance quality of 
the generated solutions and the execution time for all sets of input data. 

5. To demonstrate the effectiveness of the prototype and the proposed algorithms as compared to the estimates 
of the solutions generated by the prototype and the user (expert). 

3.1. Development of Prototype 

For the purposes of the experiment a prototype was developed. Through it planned experiments were conducted. 
From the obtained results appropriate conclusions were made. Algorithms that were discussed in the previous 
section are implemented in the prototype and can be used to generate schedules. Fig. 4 shows an example 
session using the prototype. 

 

 
 

Figure 4. Work session with the prototype. 
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3.2. Conditions for the Experiment 

Experiments were conducted on a PC with 32 bit operating system Windows VistaTM Enterprise (Service Pack 2) 
and the following hardware configuration: 

1) Processor: Intel(R) Core(TM)2 Duo CPU T7500 @2.20GHz 2.20GHz 

2) RAM memory: 2.00 GB 

3.3. Methodology of the Experiment 

For the purposes of the experiment 5 sets of input data were prepared, which are presented in Table 1. 
 

Table 1. Sets of input data used in the experiments. 

Dataset DS1 DS2 DS3 DS4 DS5 

Events (N) 18 90 130 273 30 

Students (S) 52 175 274 549 45 

Groups (Gr) 4 14 21 43 - 

Lecturers (L) 10 29 37 62 10 

Auditoriums (A) 10 18 22 39 10 

Total (N+S+L+A) 90 312 463 923 95 
 

The input datasets were chosen with certain reasons. The dataset 1 corresponds to one course. The dataset 2 
corresponds to one subject. The dataset 3 is a combination of two subjects which have a common block courses, 
common lecturers and common auditoriums. The dataset 4 corresponds to approximately half a faculty and is a 
combination of three subjects sharing common resources. The dataset 5 is a set of 45 students who may not be 
distributed in different groups of students because they chose different curricula.  

3.4. Conclusions from the Experiments 

After conducting the experiments the following conclusions were made: 

1. With the increase in the number of events, exponentially the execution time for GA and MA increases. This 
behavior is similar to both algorithms for all values of the parameter q (see Fig. 5a and 5b). 
 

  

a)      b) 

Figure 5. Execution time of algorithms with increasing number of events: a) GA, b) MA. 
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2. With the increase in the number of solutions in the population the execution time for GA and MA increases 
linearly. This behavior is similar to all tested datasets (1 - 5).  

3. With the increase in the number of solutions in the population the quality of solutions for both algorithms, 
improve. The level of convergence (i.e. overpopulation of the population with similar solutions) occurs differently 
for each of the algorithms (see Fig. 7a and 7b). 

 

  

a)      b) 

Figure 7. Behavior of the GA and MA for a dataset 1 (N = 18, q = 40) a) GA, b) MA. 
 

4. With the increase in the number of solutions in the population, the intensity of improving the quality of solution 
decreases for both algorithms. 

5. In terms of quality of the decisions, MA provides significantly better results for all values of the parameters q 
and N, compared with GA. In terms of execution time, however, MA runs significantly slower than the GA. 

6. GA is able to generate schedules with better cost which are commensurate with the schedules constructed by 
the user-expert (for the same input data). MA generates solutions with much better estimates than the other two 
methods, aiming to combine the events in such a way as to obtain a schedule with an optimal cost (see Fig. 8). 
 

 

Figure 7. Costs of schedules generated by the GA, user-expert and MA (for a dataset 5 (N = 30)). 
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In Fig. 8 the behavior of the GA and MA for a set of input data 5 (N = 30) is shown. 

 

   

а)      б) 
Figure 8. Behavior of the GA and MA for a dataset 5 (N = 30). 

 

4. Conclusion 

In this paper genetic and memetic algorithms as an approach to solving combinational optimization problems are 
presented. The key terms associated with these algorithms, such as representation, coding and evaluation of the 
solution, genetic operators for the crossover, mutation and reproduction, stopping criteria and others are 
described. Two developed algorithms (genetic and memetic) are presented for each of them the computational 
complexity is defined. These algorithms are used in solving the university course timetable problem. The 
methodology and the object of study are presented. The main objectives of the planned experiments are 
formulated. The conditions for conducting experiments are specified. The developed prototype and its 
functionality are briefly presented. The results are analyzed and appropriate conclusions are formulated. The 
future trends of work are presented. 
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