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THE CASCADE NEO-FUZZY ARCHITECTURE USING CUBIC–SPKINE ACTIVATION 
FUNCTIONS 

Yevgeniy Bodyanskiy, Yevgen Viktorov 

Abstract: in the paper new hybrid system of computational intelligence called the Cascade Neo-Fuzzy Neural 
Network (CNFNN) is introduced. This architecture has the similar structure with the Cascade-Correlation Learning 
Architecture proposed by S.E. Fahlman and C. Lebiere, but differs from it in type of artificial neurons. CNFNN 
contains neo-fuzzy neurons, which can be adjusted using high-speed linear learning procedures. Proposed 
CNFNN is characterized by high learning rate, low size of learning sample and its operations can be described by 
fuzzy linguistic “if-then” rules providing “transparency” of received results, as compared with conventional neural 
networks. Using of cubic-spline membership functions instead of conventional triangular functions allows 
increasing accuracy of smooth functions approximation. 

Keywords: artificial neural networks, constructive approach, fuzzy inference, hybrid systems, neo-fuzzy neuron, 
cubic-spline functions. 

ACM Classification Keywords: I.2.6 Learning – Connectionism and neural nets. 

Introduction 

At the present time artificial neural networks are widely applied for solving identification, prediction, and modeling 
problems of significantly nonlinear processes when information given as time-series or numerical “object-
property” tables generated by stochastic or chaotic systems. However in real conditions data processing often 
must be performed simultaneously with the plant functioning and therefore timing budget becomes quite valuable. 
So called “optimization-based networks” such as Multilayer Perceptron, Radial Basis Functions Network (RBFN), 
Normalized Radial Basis Functions Network (NRBFN) in most cases can be ineffective to solve mentioned above 
problems because of their low convergence rate during learning procedure, curse of dimensionality, and 
impossibility to learn in on-line mode. 

Traditionally by the learning we understand the process of the neural network’s synaptic weights adjustment 
accordingly to selected optimization procedure of the accepted learning criterion [Cichocki, 1993; Haykin, 1999]. 
Quality of the received results can be improved not only by adjusting weight coefficients but also by adjusting 
architecture of the neural network (number of nodes). There are two basic approaches of the neural network 
architecture adjustment: 1) “constructive approach” [Platt, 1991; Nag, 1998; Yingwei, 1998] — starts with simple 
architecture and gradually adds new nodes during learning; 2) “destructive approach” [Cun, 1990; Hassibi, 1993; 
Prechelt, 1997] — starts with initially redundant network and simplifies it throughout learning process. 

Obviously, constructive approach needs less computational resources and within the bounds of this technique the 
cascade neural networks (CNNs) [Fahlman, 1990; Schalkoff, 1997; Avedjan, 1999] can be marked out. The most 
efficient representative of the CNNs is the Cascade-Correlation Learning Architecture (CasCorLA) 
[Fahlman, 1990]. This network begins with the simplest architecture which consists of a single neuron. 
Throughout a learning procedure new neurons are added to the network, producing a multilayer structure. It is 
important that during each learning epoch only one neuron of the last cascade is adjusted. All pre-existing 
neurons process information with “frozen” weights. The CasCorLA authors, S.E. Fahlman and C. Lebiere, point 
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out high speed of the learning procedure and good approximation properties of this network. But it should be 
observed that elementary Rosenblatt perceptrons with hyperbolic tangent activation functions are used in this 
architecture as nodes. Thus an output signal of each neuron is non-linearly depended from its weight coefficients. 
Therefore it is necessary to use gradient learning methods such as delta-rule or its modifications, and operation 
speed optimization becomes impossible. In connection with the above it seems to be reasonable to synthesize 
the cascade architecture based on the elementary nodes with linear dependence of an output signal from the 
synaptic weights. It allows to increase a speed of synaptic weights adjustment and to reduce minimally required 
size of training set. 

In [Bodyanskiy, 2007a] the ortho-neurons were proposed as such nodes. Also it was shown how simply and 
effectively an approximation of sufficiently complex function can be performed using this technique. In 
[Bodyanskiy, 2004a; Bodyanskiy, 2004b; Bodyanskiy, 2006a; Bodyanskiy, 2006b; Bodyanskiy, 2007b; 
Bodyanskiy, 2008a; Viktorov, 2008] the orthogonal and the cascade orthogonal neural networks were introduced. 
These architectures have shown quite good results during simulation modeling, significantly exceeding the 
conventional cascade neural networks in training speed. 

It is well known the main ANN’s disadvantage is a non-interpretability of received results, i.e. trained neural 
network is a “black box”, and often their usage is restrained because of this reason. An interpretability and 
transparency together with the learning capabilities are the main properties of the neuro-fuzzy systems 
[Jang, 1997], which can be trained using backpropagation and in consequence the time required for weights 
tuning and the size of a training set are significantly increase. The neural network which allows to avoid these 
disadvantages was introduced in [Bodyanskiy, 2008b]. It has the cascade architecture and uses neo-fuzzy 
neurons [Yamakawa, 1992; Uchino, 1997; Miki, 1999] as nodes. Traditionally triangular functions are used as 
membership functions in neo-fuzzy neuron. Therefore when we have deal with a process described by smooth 
function we should either increase quantity of membership functions, what leads to increasing of the time required 
for weight coefficients adjustment, or quality of obtained results would be reduced. At this paper an attempt to get 
over this difficulty is taken. 

The Neo-Fuzzy Neuron 

Neo-fuzzy neuron is a nonlinear multi-input single-output system shown in Fig.1. 

It realizes the following mapping: 





n

i
ii xfy

1

)(ˆ  (1) 

where ix  is the i-th input (i = 1,2,…,n), ŷ is a system output. Structural blocks of neo-fuzzy neuron are nonlinear 

synapses NSi which perform transformation of i-th input signal in the from 
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ijijiii xwxf    

Each nonlinear synapse realizes the fuzzy inference 

IF ix  IS jix  THEN THE OUTPUT IS jiw  

where jix  is a fuzzy set which membership function is ji , jiw  is a singleton (synaptic weight) in consequent 

[Uchino, 1997]. As it can be readily seen nonlinear synapse in fact realizes Takagi-Sugeno fuzzy inference of 
zero order. 
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Figure 1. The Neo-Fuzzy Neuron 
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Figure 2. Triangular membership functions 
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Conventionally the membership functions )( iji x  in the antecedent are complementary triangular functions as 

shown in Fig. 2. 

For preliminary normalized input variables ix  (usually 10  ix ), membership functions can be expressed in 

the form: 
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where jic  are arbitrarily selected centers of corresponding membership functions. Usually they are equally 

distributed on interval [0, 1]. This contributes to simplify the fuzzy inference process. That is, an input signal ix  

activates only two neighboring membership functions simultaneously and the sum of the grades of these two 
membership functions equals to unity (Ruspini partitioning), i.e. 

.1)()( ,1   iijiji xx   (2) 

Thus, the fuzzy inference result produced by the Center-of-Gravity defuzzification method can be given in the 
very simple form: 

).()()( ,1,1 iijijijijiii xwxwxf    (3) 

By summing up )( ii xf , the output ŷ  of Eq. (1) is produced. 

When a vector signal T
n kxkxkxkx ))(),...,(),(()( 21  ( ,...2,1k  is a discrete time) is fed to the input of 

the neo-fuzzy neuron, the output of this neuron is determined by both the membership functions ))(( kxiji  and 

tunable synaptic weights )1( kwji , which were obtained at the previous training epoch. 

  
  


n

i

n

i

h

j
ijijiii kxkwkxfky

1 1 1

))(()1())(()(ˆ    

and thereby neo-fuzzy neuron contains nh  synaptic weights which should be determined. 

The authors of the NFN note [Yamakawa, 1992; Uchino, 1997; Miki, 1999] among its most important advantages, 
the high rate of learning, computational simplicity, the possibility of finding the global minimum of the learning 
criterion in real time and also that it is characterized by fuzzy linguistic “if-then” rules. 

The learning criterion (goal function) is the standard local quadratic error function: 
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minimized via the conventional gradient stepwise algorithm, resulting in the following weight update procedure: 
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where )(ky  is the target value of the output (learning signal),   is the scalar learning rate parameter which 

determines the speed of convergence and is chosen empirically. 

For the purpose of increasing training speed [Bodyanskiy, 2003; Kolodyazhniy, 2005] Kaczmarz-Widrow-Hoff 
optimal one-step algorithm [Kaczmarz, 1937; Kaczmarz, 1993; Widrow, 1960] can be used in the following form: 
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where 

  Tnhnijihh kxkxkxkxkxkx ,))1(()),...,1(()),...,1(()),...,1(()),...,1(())1(( 2211111  

 Thnjihh kwkwkwkwkwkw )(),...,(),...,(),...,(),...,()( 2111  are 1)( hn vectors, generated by the 

corresponding variables. Also exponentially weighted modification of procedure (4) can be used: 
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 (5) 

which possesses both smoothing and following properties. 

In case we have priori defined data set training process can be performed in a batch mode for one epoch using 
conventional least squares method.  

On basis of neo-fuzzy neurons in [Kolodyazhniy, 2004a; Kolodyazhniy, 2004b; Bodyanskiy, 2005a; 
Bodyanskiy, 2005b; Bodyanskiy, 2005c; Kolodyazhniy, 2006] two-layer feedforward neuro-fuzzy network was 
synthesized. It possesses improved approximation capabilities in comparison with conventional multilayer 
perceptron. Given ANN utilized backpropagation for weight adaptation and obviously it results in decreasing rate 
of convergence in the hidden layer. This circumstance also was a reason for developing cascade neo-fuzzy 
neural network and improvement of its approximation possibilities. 

Cubic-Spline Activation Functions 

As stated above conventionally triangular membership functions are used as activation functions in neo-fuzzy 
neuron. It entails some difficulties during modeling or forecasting processes which are described by smooth 
functions. At this case piecewise-linear approximation performed by conventional neo-fuzzy neuron can bring us 
to decreased accuracy of received results. To minimize its negative effect we can increase number of 
membership functions. But it results in increasing of synaptic weight coefficients quantity and therefore complexity 
of our architecture is rising as well as time required for its learning. 

To avoid this disadvantage cubic-spline membership functions (6) can be used. Commonly they are given in the 
following form: 
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and shown in the Fig. 3. 

 

 

Figure 3. Cubic-spline membership functions (in case cb  ) 

 

It can be readily seen from the Fig. 3 that input signal activates only two neighboring functions simultaneously just 
like in case with triangular membership functions. But given system of functions doesn’t meet the requirements to 
satisfy the Ruspini partitioning (2). It brings us to impossibility of using Center-Of-Gravity deffuzification method in 
a simple form (3) and so overall computational complexity is increases. To avoid this imperfection we can use 

cubic spline membership functions with cb   and also in this case expression (6) can be replaced by another 

expression (7) which gives completely identical results but its usage is more suitable. 
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Proposed cubic spline membership functions shown in Fig. 4. 

 



International Journal "Information Theories & Applications" Vol.16 / 2009 

 

251

 

Figure 4. Cubic spline membership functions (in case cb   or in case of notation (7)) 

 

Utilizing such recorded membership functions (7) we’ve got all requirements to meet the Ruspini partitioning (2) 
and it is considerably contributes to simplify the fuzzy inference process. On the other hand, using of cubic spline 
activation functions provides smooth polynomial approximation instead of piecewise-linear approximation and 
makes possible to perform a high quality modeling of significantly nonlinear nonstationary signals and processes. 

The Cascade Neo-Fuzzy Architecture Using Cubic-Spline Activation Functions and Its Learning 
Algorithm 

The Cascade Neo-Fuzzy Neural Network architecture shown in Fig.5 and mapping which it realizes has the 
following form: 
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 neo-fuzzy neuron of the third cascade 
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Figure 5. The Cascade Neo-Fuzzy Neural Network Architecture. 
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dimensionality. Then we can represent expression (8) in vector notation: 

 .ˆ ][][][ mTmm wy    

The cascade neo-fuzzy neural network learning can be performed in both batch mode and mode of sequential 
information processing (adaptive weights tuning). 

Firstly, let us examine situation when all training dataset priori defined, i.e. we have a set of points 
).(),();...;(),();...;2(),2();1(),1( NyNxkykxyxyx  For the neo-fuzzy neuron of the first cascade NFN[1] a 

set of membership level values )(),...,(),...,2(),1( ]1[]1[]1[]1[ Nk   is evaluated, where 
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where )(  - symbol of Moore-Penrose pseudoinversion. 

In case data are proceed sequentially more suitable to use a recurrent form of least squares method instead 
of (9) 
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where   is a large positive number, I  is a unity matrix with corresponding dimensionality. 

Usage of adaptive algorithms (4) or (5) is also possible and leads to reducing of computational complexity of 
learning process. In any case utilization of procedures (4), (5), (9), (10) essentially reduces learning time in 
comparison with gradient algorithms underlying delta-rule and backpropagation. 

After the first cascade learning completion, synaptic weights of the neo-fuzzy neuron NFN1 become ‘frozen’, all 

values )(ˆ),...,(ˆ),...,2(ˆ),1(ˆ ]1[]1[]1[]1[ Nykyyy  are evaluated and second cascade of network which consists of 

a single neo-fuzzy neuron NFN2 is generated. It has one additional input for the output signal of the first cascade. 

Then procedure (5) again applied for adjusting vector of weight coefficients ]2[w , which dimensionality is 

)1( nh . 

In serial mode neurons are trained sequentially, i.e. on basis of input signal )(kx  synaptic weights )(]1[ kw  are 

evaluated and vector of outputs )(ˆ ]1[ ky  is obtained, then using vector of second cascade inputs 

 )(ˆ),( ]1[ kykxT  weights )(]2[ kw  and outputs )(ˆ ]2[ ky  are calculated. For this purpose algorithms (2), (3) and 

(6) can be used equally well. 

The neural network growing process (increasing quantity of cascades) continues until we obtain required 
precision of the solved problem’s solution, and for the adjusting weight coefficients of the last m-th cascade 
following expressions are used: 
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in a serial mode. 

Proposed CNFNN significantly excels its prototype – cascade-correlation architecture – in learning speed and can 
be trained in both batch mode and serial (adaptive) mode. Linguistic interpretation of received results 
considerably extends functional facilities of cascade neo-fuzzy neural network. Using of cubic spline functions as 
activation functions in neo-fuzzy neurons significantly increases approximation qualities of network when we have 
deal with processes which described by highly non-linear signals. 

Simulation Results 

In order to confirm the efficiency of proposed approach for smooth functions approximation we solved two test 
problems. First was the ‘breast cancer in Wisconsin’ benchmark classification problem. It is evident that when we 
have deal with such problem piecewise-linear separating hyperspace which can be obtained using conventional 
neo-fuzzy neuron gives almost the same quality of classification like smooth shaped separating hyperspace. So 
at this case advantage of proposed method wouldn’t be significant, what shown below. On the other hand if we 
model some process which described by the smooth function proposed at this paper technique allows 
considerably reduce quantity of weight coefficients and therefore overall computational complexity of neuro-fuzzy 
architecture and also increase quality of received results. So the second test problem was the dynamic object 
identification problem. 

Let us have a look at the first test problem – ‘breast cancer in Wisconsin’ benchmark classification problem. We 
used dataset which contained 699 points and can be found at the address ftp://ftp.cs.wisc.edu/math-prog/cpo-
dataset/machine-learn/cancer/cancer1/datacum. 16 points had parameters with missed values so they were 
eliminated from the dataset and remaining 683 points were separated on training set – 478 points (70%) and test 
set – 205 points (30%). 

Each point has 9-dimensional feature vector and 1 class parameter which should be determined and identifies 
either benign or malignant tumor has examined patient. Feature values were normalized on interval [0; 1]. 
Normalization procedure preceding synaptic weights adjustment process is very important when we train the 
Cascade Neo-Fuzzy Neural Network because used set of cubic spline activation functions gives zero output if 
input signal lies outside specified interval. Also normalization procedure is necessary between cascades. 

For comparison two architectures were trained and simulated. First of them used conventional neo-fuzzy neurons 
with triangular activation functions and the second one utilized neo-fuzzy neurons with cubic spline activation 
functions. Both architectures consist of 3 cascades and each cascade consists of a single neo-fuzzy neuron with 
5 activation functions. For synaptic weight coefficients adaptation in each cascade least squares method was 
utilized. Obtained results of classifications can be found in table 1. 

When output signal be found within the range [0.3; 0.7] it is lesser probability that classification were correct. We 
quantify and marked out such classified samples as points outside the ‘belief zone’. 
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Table 1 – Classification results for Cascade Neo-Fuzzy Neural Networks with 
different types of neo-fuzzy neurons. 

Type of neo-fuzzy 
neuron 

Correctly classified 
examples 

Incorrectly classified 
examples 

Outside the ‘belief zone’ 

Conventional NFN 197 6 2 

NFN with cubic spline 
activation functions 

197 3 5 

 

From the table we can see that Cascade Neo-Fuzzy Neural Network which utilizes neo-fuzzy neurons with cubic 
spline activation functions gives slightly better results than architecture with triangular activation functions. As it 
was already stated above difference between two examined architectures at this case isn’t considerable. But let 
us further pay attention on the class of problems which can be solved better and faster using proposed at this 
paper cascade architecture. 

The second test problem was the dynamic plant identification problem. Proposed dynamic plant [Patra, 2002; 
Narendra, 1990] can be defined by following equation: 

 ))(()1(6.0)(3.0)1( kufkykyky    

where 

 .5sin1.03sin3.0sin6.0)( uuuuf    

There was generated a sequence which contained 1500 values of signal for k=1,2,…,1500. On training set signal 
250/2sin)( kku   (k=1,…,500) have been used and on the testing set 250/2sin)( kku   

(k=501,…,1000), 25/2sin5.0250/2sin5.0)( kkku   (k=1001,…1500). It means that on testing set 

sinusoidal component of the dynamic plant is changing and therefore output signal changes its form too. 
Obtained set was normalized on interval [0, 1] because of reasons mentioned above. 

For estimation of received results we used normalized mean square error: 
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where   is a mean square deviation of the predicted process on the training set. 

Three architectures were trained and simulated. First architecture used conventional neo-fuzzy neuron with 6 
activation functions in each cascade and had eight cascades. Second and third architectures were the same 
except the type of activation functions. One of them used triangular functions and other cubic spline functions. 
Each nonlinear synapse contained 4 activation functions and quantity of cascades for both architectures was 4. 
For adjusting weight coefficients in all cases LSM was used. Obtained results are given in table 2 and shown in 
Fig. 6 (dynamic object identification results using second and third architecture are shown). 
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a) 

 

b) 

Figure 2. Dynamic plant identification using 
the Cascade Neo-Fuzzy Neural Network with a) conventional neo-fuzzy neurons; 
b) neo-fuzzy neurons with cubic spline activation functions in non-linear synapses; 

normalized plant output – solid line; network output – dashed line; identification error – chain line. 

 

Table 2. Results of the dynamic plant identification. 

Type of neo-fuzzy 
neuron in the 

cascade 
architecture 

Quantity of 
activation 
functions 

Quantity of 
cascades 

Total number of 
adjustable 

parameters in 
architecture 

NRMSE 

Conventional NFN 6 8 102 0.0008 

Conventional NFN 2 4 16 0.0063 

NFN with cubic 
spline activation 

functions 
2 4 16 0.0005 
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As it can be seen from the table 2 usage of neo-fuzzy neurons with cubic spline activation functions provides 
decreasing of architecture complexity as well as increasing of obtained results quality. In concerned test problem, 
when we applied two identical architectures, obtained error for that which utilized conventional neo-fuzzy neurons 
was appreciably greater and therefore quality of output signal was noticeably worse, what can be seen in Fig. 6. 
To obtain quality of output signal comparable with provided by Cascade Neo-Fuzzy Neural Network with cubic 
spline activation functions, complexity of architecture which utilized conventional neo-fuzzy neurons was 
considerably increased. And approximately identical result was obtained when total number of adjustable 
parameters was about six times greater than in architecture with cubic spline activation functions. 

Conclusion 

The Cascade Neo-Fuzzy Neural Network which utilized neo-fuzzy neurons with cubic spline activation functions 
is proposed. It differs from the known cascade networks in increasing of operation speed, real-time processing 
possibility and transparency due to linguistic interpretability of received results. Used type of activation functions 
allows to increase accuracy of smooth functions approximation, reduce time required for adjusting weight 
coefficients and decrease overall architecture complexity. Theoretical justification and experiment results confirm 
the efficiency of developed approach to cascade neo-fuzzy systems synthesis. 

Bibliography 

[Cichocki, 1993]. Cichocki A., Unbehauen R. Neural Networks for Optimization and Signal Processing. Stuttgart, Teubner, 
1993. 

[Haykin, 1999] Haykin S. Neural Networks. A Comprehensive Foundation. Upper Saddle River, N.J, Prentice Hall, 1999. 

[Platt, 1991] Platt J. A resource allocating network for function interpolation. In: Neural Computation, 3. 1991. P. 213-225. 

[Nag, 1998]. Nag A., Ghosh J. Flexible resource allocating network for noisy data. In: Proc. SPIE Conf. on Applications and 
Science of Computational Intelligence. 1998. P. 551-559. 

[Yingwei, 1998] Yingwei L., Sundararajan N., Saratchandran P. Performance evaluation of a sequential minimal radial basis 
function (RBF) neural network learning algorithm. IEEE Trans. on Neural Networks, 9. 1998. P. 308-318. 

[Cun, 1990] Cun Y. L., Denker J. S., Solla S. A. Optimal brain damage. In: Advances in Neural Information Processing 
Systems, 2. 1990. P. 598-605. 

[Hassibi, 1993] Hassibi B. Stork D. G. Second-order derivatives for network pruning: Optimal brain surgeon. In: Advances in 
Neural Information Processing Systems. Eds. Hanson et al. San Mateo, CA: Morgan Kaufman, 1993. P. 164-171. 

[Prechelt, 1997]. Prechelt L. Connection pruning with static and adaptive pruning schedules. Neurocomputing, 16. 1997. 
P. 49-61. 

[Fahlman, 1990] Fahlman S.E., Lebiere C. The cascade-correlation learning architecture. In: Advances in Neural Information 
Processing Systems. Ed. D.S. Touretzky. San Mateo, CA: Morgan Kaufman, 1990. P. 524-532. 

[Schalkoff, 1997] Schalkoff R.J. Artificial Neural Networks. N.Y.: The McGraw-Hill Comp., 1997. 

[Avedjan, 1999] Avedjan E.D., Barkan G.V., Levin I.K. Cascade neural networks. Avtomatika i Telemekhanika, 3. 1999. 
P. 38-55. 

[Bodyanskiy, 2007a] Bodyanskiy Ye., Viktorov Ye., Slipchenko O. Orthosynapse, ortho-neurons, and neuropredictor based 
on them. Systemi obrobki informacii, Issue 4(62). 2007. P. 139-143. 

[Bodyanskiy, 2004a] Bodyanskiy Ye., Kolodyazhniy V., Slipchenko O. Artificial neural network with orthogonal activation 
functions for dynamic system identification. Synergies between Information Processing and Automation. 
Eds. O. Sawodny and P. Scharff. Aachen: Shaker Verlag, 2004. P. 24-30. 



International Journal "Information Theories & Applications" Vol.16 / 2009 258

[Bodyanskiy, 2004b] Bodyanskiy Ye., Kolodyazhniy V., Slipchenko O. Structural and synaptic adaptation in the artificial 
neural networks with orthogonal activation functions. Sci. Proc. of Riga Technical University. Comp. Sci., Inf. Technology 
and Management Sci, 20. 2004. P. 69-76. 

[Bodyanskiy, 2006a] Bodyanskiy Ye., Pliss I., Slipchenko O. Growing neural networks based on orthogonal activation 
functions. Proc. XII-th Int. Conf. “Knowledge–Dialog–Solution”. Varna, 2006. P. 84-89. 

[Bodyanskiy, 2006b] Bodyanskiy Ye., Slipchenko O. Ontogenic neural networks using orthogonal activation functions. Prace 
naukowe Akademii Ekonomicznej we Wroclawiu, 21. 2006. P. 13-20. 

[Bodyanskiy, 2007b] Bodyanskiy Ye., Pliss I., Slipchenko O. Growing neural network using nonconventional activation 
functions. Int. J. Information Theories & Applications, 14. 2007. P. 275-281. 

[Bodyanskiy, 2008a] Bodyanskiy Ye., Dolotov A., Pliss I., Viktorov Ye. The cascade orthogonal neural network. Advanced 
Research in Artificial Intelligence. Bulgaria, Sofia: Institute of Informational Theories and Applications FOI ITHEA, 2. 
2008. P. 13-20. 

[Viktorov, 2008] Viktorov Ye., Bodyanskiy Ye., Dolotov A. Solving approximation and forecasting problems using double 
ortho-neuron. Komp’juterni nauky ta informacijni tekhnologhiji, Issue 598. 2008. P. 70-77. 

[Jang, 1997] Jang Jr. S. R., Sun C. T., Mizutani E. Neuro-Fuzzy and Soft Computing. A Computational Approach to Learning 
and Machine Intelligence. N.J.: Prentice Hall, 1997. 

[Bodyanskiy, 2008b] Bodyanskiy Ye., Viktorov Ye., Pliss I. The cascade neo-fuzzy neural network and its learning algorithm. 
Visnyk Uzhghorods’kogho Nacional’nogho universytetu. Serija “Matematyka i informatyka”, Issue 17. 2008. P. 48-58. 

[Yamakawa, 1992] Yamakawa T., Uchino E., Miki T., Kusanagi H. A neo fuzzy neuron and its applications to system 
identification and prediction of the system behavior. Proc. of 2-nd Int.Conf. on Fuzzy Logic and Neural Networks  
“IIZUKA-92”. Iizuka, Japan, 1992. P. 477-483. 

[Uchino, 1997] Uchino E., Yamakawa T. Soft computing based signal prediction, restoration and filtering. Intelligent Hybrid 
Systems: Fuzzy Logic, Neural Networks and Genetic Algorithms. Ed. Da Ruan. Boston: Kluwer Academic Publisher, 
1997. P. 331-349. 

[Miki, 1999] Miki T., Yamakawa T. Analog implementation of neo-fuzzy neuron and its on-board learning. Computational 
Intelligence and Applications. Ed. N. E. Mastorakis. Piraeus: WSES Press, 1999. P. 144-149. 

[Bodyanskiy, 2003] Bodyanskiy Ye., Kokshenev I., Kolodyazhniy V. An adaptive learning algorithm for a neo-fuzzy neuron. 
Proc. 3rd Int. Conf. of European Union Soc. for Fuzzy Logic and Technology (EUSFLAT 2003). Zittau, Germany, 2003. 
P. 375-379. 

[Kolodyazhniy, 2005] Kolodyazhniy V., Bodyanskiy Ye., Otto P. Universal approximator employing neo-fuzzy neurons. In: 
Computational Intelligence: Theory and Applications. Ed. by B. Reusch. Berlin-Heidelberg: Springer, 2005. P. 631-640. 

[Kaczmarz, 1937] Kaczmarz S. Angenaeherte Ausloesung von Systemen Linearer Gleichungen. Bull. Int. Acad. Polon. Sci, 
Let. A. 1937. S. 355-357. 

[Kaczmarz, 1993] Kaczmarz S. Approximate solution of systems of linear equations. Int. J. Control, 53. 1993. P. 1269-1271. 

[Widrow, 1960] Widrow B., Hoff Jr. M. E. Adaptive switching circuits. 1960 IRE WESCON Convention Record, Part 4. 
N.Y.: IRE, 1960. P. 96-104. 

 [Kolodyazhniy, 2004a] Kolodyazhniy V., Bodyanskiy Ye. Fuzzy neural network with Kolmogorov’s structure. Proc. East West 
Fuzzy Coll. Zittau/Gorlitz: HS, 2004. P. 139-146. 

[Kolodyazhniy, 2004b] Kolodyazhniy V., Bodyanskiy Ye. Fuzzy Kolmogorov’s network. In: Lecture Notes in Computer 
Science. Heidelberg: Springer Verlag, V.3214, 2004. P. 764-771. 

[Bodyanskiy, 2005a] Bodyanskiy Ye., Gorshkov Ye., Kolodyazhniy V. Neuro-fuzzy Kolmogorov’s network with a hybid 
learning algorithm. Proc. XI-th Int. Conf. “Knowledge-Dialog-Solution”, V.2. Varna, Bulgaria, 2005. P. 622-627. 

[Bodyanskiy, 2005b] Bodyanskiy Ye., Kolodyazhniy V., Otto P. Neuro-fuzzy Kolmogorov’s network for time-series prediction 
and pattern classification. In: Lecture Notes in Artificial Intelligence, V.3698. Heidelberg: Springer Verlag, 2005. 
P. 191-202. 



International Journal "Information Theories & Applications" Vol.16 / 2009 

 

259

[Bodyanskiy, 2005c] Bodyanskiy Ye., Gorshkov Ye., Kolodyazhniy V., Poyedintseva V. Neuro-fuzzy Kolmogorov’s network. 
In: Lecture Notes in Computer Science, V.3697. Berlin-Heidelberg: Springer Verlag, 2005. P. 1-6. 

[Kolodyazhniy, 2006] Kolodyazhniy V., Bodyanskiy Ye., Poedintseva V., Stephan A. Neuro-fuzzy Kolmogorov’s network with 
a modified perceptron learning rule for classification problems. In: Computational Intelligence: Theory and Applications. 
Ed. by B. Reusch. Berlin-Heidelberg: Springer-Verlag, 2006. P. 41-49. 

[Patra, 2002] Patra J.C., Kot A.C. Nonlinear dynamic system identification using Chebyshev functional link artificial neural 
network. IEEE Trans. on Systems, Man, and Cybernetics, 4, Part B. 2002. P. 505-511. 

[Narendra, 1990] Narendra K.S., Parthasarathy K. Identification and control of dynamic systems using neural networks. IEEE 
Trans. on Neural Networks, 1. 1990. P. 4-26. 

Authors' Information 

 

Yevgeniy Bodyanskiy – Doctor of Technical Sciences, Professor of Artificial Intelligence 
Department and Scientific Head of the Control Systems Research Laboratory; Kharkiv National 
University of Radio Electronics, Lenina av. 14, Kharkiv, 61166, Ukraine. Tel: +380577021890, 
e-mail: bodya@kture.kharkov.ua. 

Major Fields of Scientific Research: Hybrid Systems of Computational Intelligence 

 

Yevgen Viktorov – PhD Student of Artificial Intelligence Department; Kharkiv National University 
of Radio Electronics, Lenina av., 14, Kharkiv, 6116, Ukraine. Tel: +380686163429, e-mail: 
yevgen.viktorov@gmail.com. 

Major Fields of Scientific Research: Artificial Neural Networks: Nonconventional Cascade and 
Multilayer Architectures; Fuzzy Logic; Neuro-Fuzzy Hybrid Systems 

 




