

International Journal "Information Theories & Applications" Vol.16 / 2009

2

International Journal
INFORMATION THEORIES & APPLICATIONS

Volume 16 / 2009, Number 1

Editor in chief: Krassimir Markov (Bulgaria)

International Editorial Staff

Chairman: Victor Gladun (Ukraine)

Adil Timofeev (Russia) Ilia Mitov (Bulgaria)
Aleksey Voloshin (Ukraine) Juan Castellanos (Spain)
Alexander Eremeev (Russia) Koen Vanhoof (Belgium)
Alexander Kleshchev (Russia) Levon Aslanyan (Armenia)
Alexander Palagin (Ukraine) Luis F. de Mingo (Spain)
Alfredo Milani (Italy) Nikolay Zagoruiko (Russia)
Anatoliy Krissilov (Ukraine) Peter Stanchev (Bulgaria)
Anatoliy Shevchenko (Ukraine) Rumyana Kirkova (Bulgaria)
Arkadij Zakrevskij (Belarus) Stefan Dodunekov (Bulgaria)
Avram Eskenazi (Bulgaria) Tatyana Gavrilova (Russia)
Boris Fedunov (Russia) Vasil Sgurev (Bulgaria)
Constantine Gaindric (Moldavia) Vitaliy Lozovskiy (Ukraine)
Eugenia Velikova-Bandova (Bulgaria) Vitaliy Velichko (Ukraine)
Galina Rybina (Russia) Vladimir Donchenko (Ukraine)
Gennady Lbov (Russia) Vladimir Jotsov (Bulgaria)
Georgi Gluhchev (Bulgaria) Vladimir Lovitskii (GB)

IJ ITA is official publisher of the scientific papers of the members of
the ITHEA® International Scientific Society

IJ ITA welcomes scientific papers connected with any information theory or its application.

IJ ITA rules for preparing the manuscripts are compulsory.
The rules for the papers for IJ ITA as well as the subscription fees are given on www.ithea.org .

The camera-ready copy of the paper should be received by http://ij.ithea.org.
Responsibility for papers published in IJ ITA belongs to authors.

General Sponsor of IJ ITA is the Consortium FOI Bulgaria (www.foibg.com).

International Journal “INFORMATION THEORIES & APPLICATIONS” Vol.16, Number 1, 2009

Printed in Bulgaria

Edited by the Institute of Information Theories and Applications FOI ITHEA®, Bulgaria,
in collaboration with the V.M.Glushkov Institute of Cybernetics of NAS, Ukraine,

and the Institute of Mathematics and Informatics, BAS, Bulgaria.

Publisher: ITHEA®
Sofia, 1000, P.O.B. 775, Bulgaria. www.ithea.org, e-mail: info@foibg.com

Copyright © 1993-2009 All rights reserved for the publisher and all authors.
® 1993-2009 "Information Theories and Applications" is a trademark of Krassimir Markov

ISSN 1310-0513 (printed) ISSN 1313-0463 (online) ISSN 1313-0498 (CD/DVD)

International Journal "Information Theories & Applications" Vol.16 / 2009

90

TRANSLITERATION AND LONGEST MATCH STRATEGY

Dimiter Skordev

Abstract: A natural requirement on transliteration systems is that transliteration and its inversion could be easily
performed. To make this requirement more precise, we consider a text transduction as easily performable if it can
be accomplished by a finite transducing device such that all successful tokenizations of input words are compliant
with the left-to-right longest-match strategy. Applied to inversion of transliteration this gives a convenient sufficient
condition for reversibility of transliteration.

Keywords: left to right, longest match, transliteration, reversible transliteration, sequential transducer.

ACM Classification Keywords: E.4 Data: Coding and information theory — Formal models of communication

Introduction

When considering a transliteration system, it is natural to impose on the transliteration and on its inversion the
requirement to be easily performable (cf., for instance, [7, Section 7] or [8, Subsection 25.2]). This requirement
can be made more precise in different ways. We present one in the following spirit: a text transduction is regarded
as easily performable if it can be accomplished by a finite transducing device such that all successful
tokenizations of input words are compliant with the left-to-right longest-match strategy (cf. e.g. [1] for some other
applications of this strategy). The requirement that both transliteration and its inversion could be easily performed
is understood in this sense, but with one device and its inverse used for transliteration and for its inversion,
respectively. A convenient sufficient condition for reversibility of transliteration is obtained in this way.

Some definitions and examples

Let Σ and Δ be two alphabets, and let T be a mapping of Σ* into the set P(Δ*) of the subsets of Δ*, where Σ*
consists, as usually, of all finite strings of symbols from Σ (including the empty string ε), and similarly for Δ*. We
may intuitively regard T as a mathematical description of some transliteration system from Σ to Δ, and for any ω
in Σ* consider the strings belonging to T(ω) as the admissible transliterations of ω in this system (clearly each
actual transliteration system from Σ to Δ can be supplied with a description of this kind having some specific
features). For any element ω of Σ* the elements of T(ω) will be called images of ω under T, and ω will be called a
pre-image under T of each of them. The mapping T will be called total if each element of Σ* has an image under
T, surjective if each element of Δ* has a pre-image under T, single-valued if no element of Σ* has two distinct
images under T, and injective if no element of Δ* has two distinct pre-images under T. The inverse mapping T−1 is
the mapping of Δ* into P(Σ*) defined as follows: for any τ in Δ* the set T−1(τ) consists of all pre-images of τ under
T. Clearly T is total if and only if T−1 is surjective, and T is injective if and only if T−1 is single-valued.

The following will be assumed in the three examples below: Σ\Δ consists of the capital and the small Russian
letters, Δ\Σ consists of the capital and the small Latin letters, Σ∩Δ contains the space character, the digits and
other characters commonly used both in Russian and in English (for instance punctuation marks).

International Journal "Information Theories & Applications" Vol.16 / 2009

91

Example 1. The transliteration system proposed in [8] can be described by a mapping T such that for any ω in Σ*
the set T(ω) has as its only element the string from Δ* obtainable from ω by means of replacements of the
following kinds (for being easier distinguishable, all Russian letters will be given in boldface):

А→A, а→a, Б→B, б→b, В→V, в→v, Г→G, г→g, Д→D, д→d, Е→E, е→e, Ё→Yo, ё→yo,
Ж→Zh, ж→zh, З→Z, з→z, И→I, и→i, Й→Yj, й→yj, К→K, к→k, Л→L, л→l, М→M. м→m,
Н→N, н→n, О→O, о→o, П→P, п→p, Р→R, р→r, С→S, с→s, Т→T, т→t, У→U, у→u,
Ф→F, ф→f, Х→Kh, х→kh, Ц→C, ц→c. Ч→Ch, ч→ch, Ш→Sh, ш→sh, Щ→Th, щ→th,
Ъ→Jh, ъ→jh, Ы→Ih, ы→ih, Ь→J, ь→j, Э→Eh, э→eh, Ю→Yu, ю→yu, Я→Ya, я→ya

(for instance, if ω0 is the sentence “Гармонический ряд расходится.” then T(ω0) has as its only element the
string “Garmonicheskiyj ryad raskhoditsya.”). Thе mapping Т is total and single-valued by its definition, and it is
injective, but not surjective because of the fact that no Russian letter is replaced by “Y” or “y”, and there is no
Russian letter whose replacement string begins with “h”.

Example 2. We shall add to the transliteration system considered in Example 1 some replacements used by a
system that is suggested in a document accessible from http://www.metodii.com. Let us consider a mapping T
such that for any ω in Σ* the set T(ω) consists of all strings from Δ* obtainable from ω by means of replacements
of the kinds considered in Example 1 and of the following additional ones: Ж→X, ж→x, Ч→Q, ч→q, Ш→W,
ш→w (now the set T(ω0) for the concrete ω0 from Example 1 will have two elements – the string indicated there
and the same string with “Garmoniqeskiyj” instead of “Garmonicheskiyj”). The mapping T is again total, injective
and non-surjective, but it is not single-valued.

Example 3. Let us define a single-valued mapping T in the same way as in Example 1, except that we take now
Й→Yy, й→yy, Х→Hh and х→hh instead of Й→Yj, й→yj, Х→Kh and х→kh, respectively (thus the set T(ω0)
for the concrete ω0 from that example will have as its only element the string “Garmonicheskiyy ryad
rashhoditsya.”). Then T is still total, single-valued, injective and not surjective, but its injectiveness is seen in a
somewhat more complicated way.

The mappings T from the above examples have the property that T(ε)={ε} and for any ω1 and ω2 in Σ* the equality
T(ω1ω2)=T(ω1)T(ω2) holds (its right-hand side denotes the set of all concatenations τ1τ2, where τ1 belongs to T(ω1)
and τ2 belongs to T(ω2)). Any mapping T with this property will be called homomorphic. Each mapping C of Σ into
P(Δ*) can be extended in a unique way to a homomorphic mapping T of Σ* into P(Δ*); the mapping T in question
will be said to be generated by C. Intuitively, we may regard the elements of C(σ) for any σ in Σ as the admissible
code strings for σ, and regard the mapping T generated by C as a description of transliteration done by replacing
the symbols from Σ with admissible code strings for them. If T is generated by C then T is total if and only if all
sets C(σ) are non-empty, T is single-valued if and only if each set C(σ) has at most one element, and T is
injective if and only if the following two conditions are satisfied:

(i) C(σ1) and C(σ2) have no common element, whenever σ1 and σ2 are distinct symbols of Σ;
(ii) no string in Δ* can be represented in two different ways as a concatenation of strings belonging to the union

of all C(σ) corresponding to symbols σ of Σ.
In the practically important case when the above-mentioned union is finite (the mapping T will be called finitary in
that case) a check for the condition (ii) can be always done by means of a theorem of Sardinas and Patterson [5].

International Journal "Information Theories & Applications" Vol.16 / 2009

92

In particular, the injectivity of the mappings T from Examples 1, 2 and 3 can be established also in this way
(taking as C the restriction of T to Σ).

The possibility of proving injectivity by means of the Sardinas-Patterson theorem does not make pointless the
search for other convenient injectivity criteria, namely such ones that give only sufficient conditions for injectivity
but guarantee a better quality of the injectivity. There are at least two reasons for this.

1. For the convenience of a transliteration system not only the injectivity matters, but also the quality of the
injectivity. An injective mapping T of Σ* into P(Δ*) could allow to find easily some element of T(ω) for any ω
in Σ*, but the problem to find ω when an element of T(ω) is given could be much more difficult. To have an
example of such a situation, let us consider the mapping T from Example 3. Suppose that a string τ is given
whose first symbol is “s”, all other ones being “h”, and we look for a string ω in Σ* such that τ belongs to
T(ω). Such a string ω exists, and its first symbol is “ш” if the length of τ is even and “с” otherwise. Evidently,
it is not possible to determine the first symbol of ω on the base of knowing only some proper prefix of τ, thus
in the case of a long τ it would be not easy to find ω by reading τ only once from left to right and writing
consecutive symbols of ω.

2. Among the numerous transliteration systems proposed until now there are some whose corresponding
mappings T are non-homomorphic due to context-dependent encoding of some letters. Such is the case for
example with the second of the two systems proposed by Uspensky in [7] – in that system the Cyrillic letter
“Й” has the encoding “Jh” when followed by a vowel or by a soft sign and has the encoding “J” otherwise,
the letter “й” being treated in a similar way (however, any other symbol from the corresponding alphabet Σ
has a unique code string not depending on the context).

The finitary homomorphic mappings of Σ* into P(Δ*) are a particular case of mappings accomplished by means of
sequential transducers in the sense of [2, Section 3.3]. By the definition accepted there, a sequential transducer
with input alphabet Σ and output alphabet Δ is any quintuple of the form (K,Σ,Δ,H,s0), where K is a finite set (the
set of the states), s0 is an element of K (the start state), H is a finite set of quadruples (called moves) with first and
last components in K, and second and third components in Σ* and Δ*, respectively. 1 The mapping T
accomplished by such a sequential transducer is defined as follows: for any ω in Σ* the set T(ω) consists of the
elements τ of Δ* such that for some non-negative integer k, some ω1, …, ωk in Σ*, some τ1, …, τk in Δ* and some
s1, …, sk in K the quadruples (si-1,ωI,τi,si), I=1,…,k, belong to H, and the equalities ω=ω1…ωk, τ=τ1…τk hold.

If T is a finitary homomorphic mapping of Σ* into P(Δ*) then T can be accomplished by a sequential transducer
(K,Σ,Δ,H,s0) such that K={s0}, and H consists of all quadruples (s0,σ,θ,s0) with σ in Σ and θ in T(σ). We shall
denote by S1, S2 and S3, respectively, sequential transducers constructed in this way for the mappings T
considered in Examples 1, 2 and 3.

To have an example of a transliteration system needing a more complicated sequential transducer for the
accomplishment of the corresponding mapping, we shall consider in more detail the already mentioned second
transliteration system from [7].

Example 4. Let Σ and Δ be as in the previous examples except that the Russian alphabet is supposed to be
without capital hard and soft signs, and Δ\Σ contains also the apostrophe besides the Latin letters. The

1 This terminology is not universally adopted. For example the same term means something else in [3], and its
present meaning is somewhat closer to the notion of finite transducer considered there (cf. Section 1.3.3 of that
book, but note that there are certain omissions in the definitions of both notions in that section).

International Journal "Information Theories & Applications" Vol.16 / 2009

93

corresponding mapping T can be described for instance as follows: for any ω in Σ* the set T(ω) has as its only
element the string from Δ* obtainable from ω by the application of a normal algorithm (in the sense of [6] and [4])
such that its scheme begins with the substitution formulas σσ1→θσ1, where either σ=“Й”, θ=“Jh”, or σ=“й”,
θ=“jh”, and σ1 is a Cyrillic vowel or a soft sign, and the further substitution formulas do the replacements listed in
Example 1 except that

(a) “J” and “j” are used instead of “Y” and “y”, respectively, in the strings for the letters “Ё”, “ё”, “Ю”, “ю”, “Я”, “я”;
(b) there are no substitution formulas for “Ъ” and “Ь”;
(c) the substitution formulas for “Й”, “й”, “Щ”, “щ”, “ъ”, “Ы”, “ы” and “ь” are

 Й→J, й→j, Щ→Xh, щ→xh, ъ→j’, Ы→Y, ы→y, ь→’
(of course such a normal algorithm would be not practically convenient, since its execution would require to read
one and the same symbol many times; a more appropriate normal algorithm for the same transliteration system
can be indicated whose substitution formulas contain an auxiliary symbol and whose execution actually performs
a letter-by-letter transliteration from left to right).The mapping T can be accomplished by a sequential transducer
({k0,k1},Σ,Δ,H,k0), where k0≠k1. We shall indicate two such sequential transducers (both of them get into the state
k1 after reading “Й” or “й” and only in that case). The first one closely corresponds to the brief description we gave
of the transliteration system in question. The set H of this sequential transducer consists of all quadruples of the
following forms:

(i) (k0,σ,T(σ),k0), where σ is in Σ\{“Й”,“й”};
(ii) (ki,σ,T(σ),k1), where σ is “Й” or “й” (I=0,1);
(iii) (k1,σ,T(σ),k0), where σ is in Σ\{“Й”,“й”}, and σ is neither a vowel, nor a soft sign;
(iv) (k0,σσ1,T(σ)“h”T(σ1),k0), where σ is “Й” or “й”, and σ1 is a Cyrillic vowel or a soft sign.
The set H of the second one consists of all quadruples of the forms (i) and (ii) above, as well as of all quadruples
(k1,σ,θ,k0), where σ is in Σ\{“Й”,“й”}, θ is T(σ) if σ is not a vowel and not a soft sign, otherwise θ is T(σ) preceded
by “h”. (Note that the second components of all quadruples in this set are one-symbol strings, whereas it is not so
for the set H of the first of the considered sequential transducers.). We shall denote the first and the second
transducers considered in this example by S4,1 and S4,2, respectively.

As a further example on the application of sequential transducers to transliteration we shall indicate an extension
of Uspensky’s transliteration system considered in Example 1. The extension in question can be used for
reversible Russian-Latin transliteration of mixed texts ― possibly containing not only Russian, but also Latin
letters.1

Example 5. Let Δ consist of the capital and the small Latin letters and of characters commonly used both in
English and in Russian, including the apostrophe, and Σ be obtained from Δ by adding to it all capital and small
Russian letters. Let C be the mapping of Σ into Δ* defined as follows: for any Russian letter σ, C(σ) is its
corresponding string from Example 1, C(σ)=σσ if σ is an apostrophe, and C(σ)=σ for all other symbols σ in Σ. Let
D(σ) be C(σ) preceded by an apostrophe. We consider a sequential transducer S5=({k0,k1},Σ,Δ,H,k0), where k0≠k1

and H consists of the following quadruples:

(i) all quadruples (ki,σ,C(σ),ki), where I = 0 and σ is not a Latin letter, or I =1 and σ is not a Russian letter;

1 A document accessible from http://www.metodii.com indicates another reversible Russian-Latin transliteration
system with some similar features.

International Journal "Information Theories & Applications" Vol.16 / 2009

94

(ii) all quadruples (ki,σ,D(σ),k1−i), where I = 0 and σ is a Latin letter, or I =1 and σ is a Russian letter.
Let T be the mapping accomplished by this transducer. Evidently T is total and single-valued. This mapping will
be shown also to be injective, but we prefer to postpone the corresponding proof to the last section.To illustrate
the action of this mapping, let us apply it to the string

“Операционная система Windows 2000 создана раньше системы Windows XP.”

The image of this string looks as follows:

“Operacionnaya sistema ’Windows 2000 ’sozdana ranjshe sistemih ’Windows XP.”

As a second illustration, we note that the string “О’Нил (O’Neill)” has the image “O’’Nil (’O’’Neill)” under T.

Remark 1. In each of the examples 1, 2 and 3, the mapping T−1 is not homomorphic although T is homomorphic
and finitary. For instance T−1(“sh”)={”ш”}, whereas T−1(“s”)T−1(“h”) is empty, in any of these examples. However, if
a mapping T is accomplished by a sequential transducer S then the corresponding mapping T−1 is accomplished
by the inverse sequential transducer S−1 (cf. Exercise 5 in [2, Section 3.3]). In particular, T−1 is accomplished by
some sequential transducer in any of the above examples. Therefore the complexity of transliteration and of the
inverse transformation can be considered in a uniform way by studying the complexity of using an arbitrary
sequential transducer.

Input and Output Tokenizers of a Sequential Transducer

We shall need a notion that is similar to the notion of sequential transducer, but is somewhat simpler. We shall
call a tokenizer any quadruple (K,Γ,G,s0), where Γ is an alphabet, K is a finite set (the set of the states), s0 is an
element of K (the start state), G is a finite set of triples (the moves) with second components in Γ* and first and
third components in K. For any t0 in K, we shall call a path of (K,Γ,G,s0) starting at t0 any finite sequence

t0,ψ1,t1,ψ2,t2,…,tm−2,ψm−1,tm−1,tm−1,ψm,tm (1)

such that the triples (t0,ψ1,t1), (t1,ψ2,t2), …, (tm−2,ψm−1,tm−1), (tm−1,ψm,tm) belong to G (the case of m=0, i.e. of the one-
term sequence consisting only of t0, is also admitted). The string ψ1ψ2…ψm−1ψm will be called the result of this
path (in the case of m=0 the result is empty). A path of (K,Γ,G,s0) starting at the state s0 will be called a
tokenization by (K,Γ,G,s0) of its result.

To any sequential transducer (K,Σ,Δ,H,s0) two tokenizers will be made to correspond ― its input tokenizer
(K,Σ,H1,s0) and its output tokenizer (K,Δ,H2,s0), where H1 and H2 consist of the triples (k,ω,k′) and (k,τ,k′),
respectively, corresponding to the quadruples (k,ω,τ,k′) in H. The input and the output tokenizers of any
sequential transducer S will be denoted by IN S and OUT S, respectively.

Example 6. The strings “тайна”, “рай” and “район” have, respectively, the following tokenizations by the
tokenizer IN S4,1:

k0,“т”,k0,“а”,k0,“й”,k1,“н”,k0,“а”,k0,

k0,“р”,k0,“а”,k0,“й”,k1,

k0,“р”,k0,“а”,k0,“йо”, k0,“н”,k0.

International Journal "Information Theories & Applications" Vol.16 / 2009

95

Example 7. T he string “O’’Nil (’O’’Neill)” has the following tokenization by OUT S5:

k0,“O”,k0,“’’”,k0,“N”,k0,“i”,k0,“l”,k0,“ “,k0,“(”,k0,“’O”,“’’”,k1,“N”,k1,“e”,k1,“i”,k1,“l”,k1,“l”,k1,“)”,k1.

Next statement is obvious, and it indicates a way for applying the input and output tokenizers to the problems of
single-valuedness and injectivity of the mapping accomplished by a sequential transducer.

Main sufficient conditions for single-valuedness and for injectivity. Let T be the mapping accomplished by a
sequential transducer (K,Σ,Δ,H,s0). Then T is surely single-valued if the following two conditions are satisfied:

(i) no string in Σ* has two different tokenizations by IN(K,Σ,Δ,H,s0);
(ii) for any s, s’ in K and any ω in Σ* there is at most one τ in Δ* such that (s,ω,τ,s’) belongs to H.
The mapping T is surely injective if the following two conditions are satisfied:

(iii) no string in Δ* has two different tokenizations by OUT(K,Σ,Δ,H,s0);
(iv) for any s, s’ in K and any τ in Δ* there is at most one ω in Σ* such that (s,ω,τ,s’) belongs to H.
The condition (i) is clearly satisfied in the case when (K,Σ,Δ,H,s0) is the one-state sequential transducer that
corresponds to a finitary homomorphic mapping of Σ* into P(Δ*), and the condition (ii) is equivalent in this case to
the non-existence of σ in Σ with more than one element in T(σ). In particular, both conditions are satisfied for the
sequential transducers S1 and S3. These conditions are satisfied also for the sequential transducers S4,1, S4,2 and
S5, but the verification of (i) needs some care for the first of them. The conditions (iii) and (iv) are satisfied for all
considered concrete sequential transducers S1, S2, S3, S4,1, S4,2, S5, however the verification of (iii) is somewhat
cumbersome in all these cases.

The considerations below can make all above-mentioned verifications easier, except the one for the sequential
transducer S3 (but it corresponds just to the example of transliteration with a more difficult inverse transformation).

We shall introduce the left-to-right longest-match strategy (LRLMS) as an algorithm for transforming strings into
tokenizations of them. Let a tokenizer (K,Γ,G,s0) and a string θ from Γ* be given. We shall consider a partial
operation on the tokenizations by (K,Γ,G,s0) of proper prefixes of θ, namely if

s0,φ1,s1,φ2,s2,…,sk−2,φk−1,sk−1,φk,sk (2)

is such a tokenization then we look for a triple (sk,φ,s) from G such that φ1φ2…φk−1φkφ is a prefix of θ with the
maximal possible length, and if there is exactly one such triple then we append its components φ and s to the
sequence (2). The following algorithm will be called the LRLMS-algorithm: given a string θ from Γ*, we start with
the one-term sequence consisting only of s0, and we apply the above-mentioned partial operation until a
tokenization of θ is obtained or no further application of the operation is possible. A termination of this process is
considered as successful if a tokenization of θ is obtained.

A tokenization (2) by the tokenizer (K,Γ,G,s0) will be said to be compliant with the left-to-right longest-match
strategy (LRLMS-compliant, for short) if this tokenization can be obtained by applying to its result the LRLMS-
algorithm. The condition is trivially satisfied if k=0, and for k≠0 it is equivalent to the following requirement: φk is
non-empty, and there are no I in {1,…,k} and no triple (si−1,φ,t) from G distinct from (si−1,φi,si) such that φ is a prefix
of φiφI+1…φk−1φk, and φi is a prefix of φ.

International Journal "Information Theories & Applications" Vol.16 / 2009

96

Example 8. The two sequences below are tokenizations by OUT S3 (of the strings “suhhoyy” and “ishhod”,
respectively), but the first one is LRLMS-compliant, whereas the second one is not (due to the prefix “sh” in the
string “shhod”):

s0,“s”,s0,“u”,s0,“hh”,s0,“o”,s0,“yy”,s0,

s0,“i”,s0,“s”,s0,“hh”,s0,“o”,s0,“d”,s0.

Remark 2. If there are no triples in G with empty second components, and we apply the LRLMS-algorithm to
some string θ from Γ* that has no LRLMS-compliant tokenization, then the application of the LRLMS-algorithm
terminates unsuccessfully. For instance, if (K,Δ,G,s0) is OUT S3,.then the application of the algorithm to the string
“ishhod” terminates unsuccessfully at the sequence s0,“i”,s0,“sh”,s0.

A tokenizer will be called compliant with the left-to-right longest-match strategy (LRLMS-compliant, for short) if all
tokenizations by this tokenizer are LRLMS-compliant. Of course this implies the non-existence of two distinct
tokenizations of one and the same string. It is easy to check that all considered concrete sequential transducers
S1, S2, S3, S4,1, S4,2, S5 have input tokenizers that are LRLMS-compliant (the situation is not completely obvious
only in the case of the sequential transducer S4,1). Example 8 shows that OUT S3 is not LRLMS-compliant.
However, the output tokenizers of all other sequential transducers in question are LRLMS-compliant. This will be
verified in the last section by means of corollaries of the necessary and sufficient condition below, where a state
of a tokenizer is called accessible if it is the last term of some tokenization by this tokenizer.1

Necessary and sufficient condition for LRLMS-compliance of a tokenizer. A tokenizer (K,Γ,G,s0) is LRLMS-
compliant if and only if it has the following properties:

(i) there is no triple in G with accessible first component and empty second one;
(ii) no two triples in G with accessible first component exist that differ from one another only in their third

components;
(iii) for any (t0,φ,t) in G with accessible t0 there is no path (1) in (K,Γ,G,s0) with m>1 such that ψ1ψ2…ψm−1 is a

proper prefix of φ and φ is a prefix of ψ1ψ2…ψm−1ψm.
Proof. Let (K,Γ,G,s0) be an arbitrary tokenizer. For the proof of the necessity, suppose (K,Γ,G,s0) is LRLMS-
compliant. Let t0 be an accessible element of K, and (2) be a tokenization by (K,Γ,G,s0) such that sk=t0. There is
no triple (t0,φ,t1) in G with empty φ – otherwise

s0,φ1,s1,φ2,s2,…,sk−2,φk−1,sk−1,φk,t0,φ,t1 (3)

would be a tokenization that is not LRLMS-compliant. There are also no φ in Γ* and distinct t and t1 in K such that
both (t0,φ,t) and (t0,φ,t1) belong to G – otherwise again (3) would be a tokenization that is not LRLMS-compliant.
Finally, it is not possible that there are (t0,φ,t) in G and a path (1) in (K,Γ,G,s0) with m>1 such that ψ1ψ2…ψm−1 is a
proper prefix of φ and φ is a prefix of ψ1ψ2…ψm−1ψm – this would contradict the LRLMS-compliance of the
tokenization

s0,φ1,s1,φ2,s2,…,sk−2,φk−1,sk−1,φk,t0,ψ1,t1,ψ2,t2,…,tm−2,ψm−1,tm−1,ψm,tm

1 All concrete tokenizers we mentioned have only accessible states. On the other hand, from an arbitrary
tokenizer we can get one having only accessible states by elimination of the states that are not accessible and of
the moves that contain such states as first or third components. It is easy to see that the reduction in question will
not affect the set of the tokenizations by the tokenizer.

International Journal "Information Theories & Applications" Vol.16 / 2009

97

(since ψ1 is a proper prefix of φ). For proving the sufficiency, suppose (K,Γ,G,s0) is not LRLMS-compliant. Then
some tokenization (2) by (K,Γ,G,s0) is not LRLMS-compliant, hence k≠0 and either φk is empty or there are some
I in {1, …, k} and some triple (si−1,φ,t) from G distinct from (si−1,φi,si) such that φi is a prefix of φ and φ is a prefix of
φiφI+1…φk−1φk. In the first case the triple (sk−1,φk,sk) violates (i). In the second case, either φ=φi, and then the pair
of triples (si−1,φ,t) and (si−1,φi,si) violates (ii), or φi is a proper prefix of φ. If φi is a proper prefix of φ, then k>i and
there is some j in {I+1, …,k−1,k} such that φ is a prefix of φiφI+1…φj−1φj, whereas φiφI+1…φj−1 is a proper prefix of
φ. In this case we can violate (iii) by setting m=j−I+1, t0=si−1 and tr=sI−1+r, ψr=φI−1+r for r=1,…,m. █

Corollary 1. Let (K,Γ,G,s0) be a tokenizer such that no triple from G has an empty second component and there
are no two triples in G that differ from one another only in their third components. Let no triples (t0,φ,t), (t0,ψ1,t1)
and (t1,ψ2,t2) exist in G such that ψ1 is a proper prefix of φ and some of the strings ψ1ψ2 and φ is a prefix of the
other one. Then (K,Γ,G,s0) is LRLMS-compliant.

Proof. Suppose there are a triple (t0,φ,t) in G and a path (1) in (K,Γ,G,s0) with m>1 such that ψ1ψ2…ψm−1 is a
proper prefix of φ and φ is a prefix of ψ1ψ2…ψm−1ψm. Then ψ1 is also a proper prefix of φ, and some of the strings
ψ1ψ2 and φ is a prefix of the other one. Since (t0,ψ1,t1) and (t1,ψ2,t2) belong to G, this is a contradiction. █

Next corollary is actually a particular instance of Corollary 1.

Corollary 2. Let ({s0},Γ,G,s0) be a (one-state) tokenizer, and let W be the set of the second components of the
triples from G. Suppose that all strings from W are non-empty, and there are no φ, ψ1 and ψ2 in W such that ψ1 is
a proper prefix of φ and some of the strings ψ1ψ2 and φ is a prefix of the other one. Then ({s0},Γ,G,s0) is LRLMS-
compliant.

Some concrete applications

Suppose two alphabets Σ and Δ are given, and T is the mapping of Σ* into P(Δ*) describing a given transliteration
system. We shall call this transliteration system easily usable if T is an injective mapping that can be
accomplished by some sequential transducer with LRLMS-compliant input and output tokenizers. The
transliteration systems mentioned in Examples 1, 2, 4 and 5 are easily usable in the above sense, and this will be
shown by verifying that any of the sequential transducers S1, S2, S4,1, S4,2, S5 has LRLMS-compliant input and
output tokenizers and satisfies item (iv) from the main sufficient conditions for single-valuedness and for injectivity
(of course it would be enough to do this for one of the sequential transducers S4,1 and S4,2 instead of doing it for
both of them).

The verification of (iv) for each of the above-mentioned sequential transducers is almost immediate (even in the
case of S5, although S5 has moves with distinct second components and one and the same third one – for
instance the quadruples (k0,“Д”,“D”,k0) and (k1,“D”,“D”,k1) or the quadruples (k0,“D”,“’D”,k1) and (k1,“Д”,“’D”,k0)).

By their construction, the sequential transducers in question have no moves with empty second or third
components, hence the corresponding input and output tokenizers have no moves with empty second
components.

The LRLMS-compliance of the input tokenizers of the considered sequential tokenizers was already
characterized as more or less obvious. However, there is no problem to verify it also by means of Corollary 1 or
(for the case of S1 and S2) Corollary 2. For S1, S2, S4,2 and S5 the verification is trivial thanks to the fact that all

International Journal "Information Theories & Applications" Vol.16 / 2009

98

second components of their moves have length 1. Now let us suppose that (t0,φ,t), (t0,ψ1,t1) and (t1,ψ2,t2) are
moves of the tokenizer IN S4,1 such that ψ1 is a proper prefix of φ and some of the strings ψ1ψ2 and φ is a prefix
of the other one. Then (t0,φ,t) must have the form (k0,σσ1,k0), where σ is “Й” or “й”, and σ1 is a Cyrillic vowel or a
soft sign, hence ψ1 is “Й” or “й”, t1 is k1, and ψ2 begins with a Cyrillic vowel or a soft sign. From the fact that t1 is k1
the conclusion follows that ψ2 is a symbol of Σ which is neither a Cyrillic vowel nor a soft sign, and this is a
contradiction.

The LRLMS-compliance of OUT S1 and OUT S2 can be shown again by means of Corollary 2. Since all moves of
S1 are also moves of S2, it would be sufficient to check the assumption of Corollary 2 only for OUT S2. Suppose
the set W for this tokenizer has elements φ, ψ1 and ψ2 such that ψ1 is a proper prefix of φ and some of the strings
ψ1ψ2 and φ is a prefix of the other one. The assumptions that φ and ψ1 belong to W and ψ1 is a proper prefix of φ
imply the equality φ = ψ1“h”. From here, taking into account also the assumptions that ψ2 belongs to W and some
of the strings ψ1ψ2 and φ is a prefix of the other one, we get a contradiction by firstly concluding that ψ2 begins
with “h”.

As to the LRLMS-compliance of the output tokenizers of S4,1, S4,2 and S5, it can be shown by means of
Corollary 1. It is straightforward (although somewhat tedious) to see that no of these tokenizers has two moves
differing from one another only in their third components. Now suppose for some of this tokenizers the existence
of moves (t0,φ,t), (t0,ψ1,t1) and (t1,ψ2,t2) such that ψ1 is a proper prefix of φ and some of the strings ψ1ψ2 and φ is a
prefix of the other one. We shall consider the cases of S4,1, S4,2 and S5 one by one. By reasoning in two steps, in
any of these three cases we shall get a contradiction to the assumption that (t1,ψ2,t2) is a move of the
corresponding output tokenizer – in the first step we shall make some conclusions from the assumptions that
(t0,φ,t), (t0,ψ1,t1) are moves of the tokenizer in question and ψ1 is a proper prefix of φ, whereas in the second step
we shall take into account also that some of the strings ψ1ψ2 and φ is a prefix of the other one.

In the case of S4,1 we conclude in the first step that either the first symbol in φ after its prefix ψ1 is “h” or we have
the equalities t1= k1, φ=ψ1σ, where σ is some of the letters “a”, “o”, “u” or an apostrophe. Making use of this
conclusion, we get a contradiction in the second step by inferring that either the string ψ2 begins with “h” or in the
presence of the equality t1= k1 this string begins with some of the letters “a”, “o”, “u” or with an apostrophe.

The first step in the case of S4,2 is to conclude that we have either the equalities t1=k0, φ=ψ1“h” or the equalities
t1= k1, φ=ψ1σ, where σ is some of the letters “a”, “o”, “u”. We get a contradiction in the second step by inferring
that ψ2 begins with “h” in the presence of the equality t1=k0 or with some of the letters “a”, “o”, “u” in the presence
of the equality t1= k1.

In the case of S5 we firstly conclude that t1=k0, φ=ψ1“h”, and then we get a contradiction by inferring that ψ2
begins with “h”.

Remark 3. Instead by reasoning as above, each of the considered conditions could be verified by straightforward
inspection of all finitely many possible cases. Of course, it would be better to do this by using some appropriate
computer program.

Remark 4. As we observed (by using Example 8), the tokenizer OUT S3 is not LRLMS-compliant. This statement
can be strengthened as follows: the mapping accomplished by S3 cannot be accomplished at all by a sequential
transducer with a LRLMS-compliant output tokenizer (hence the transliteration indicated in Example 3 is not
easily usable in our sense). In fact, if we suppose that such other sequential transducer can be constructed then
we can get a contradiction by considering the application of the LRLMS-algorithm for the corresponding output
tokenizer to strings consisting of one “s” followed by arbitrarily many “h”. Namely, we can show then the existence

International Journal "Information Theories & Applications" Vol.16 / 2009

99

of a non-empty string in Σ* whose image will be a prefix of all sufficiently long strings of the above-mentioned
form, and obviously such a string cannot exist.

Acknowledgments

The author thanks V. A. Uspensky and M. R. Pentus for some very useful discussions and very helpful
information.

Bibliography

[1] Gerdemann, D., van Noord, G. Transducers from rewrite rules with backreferences. In: Ninth Conference of the
European Chapter of the Association for Computational Linguistics (8-12 June 1999, Univ. of Bergen, Bergen, Norway).
San Francisco, Morgan Kaufmann Publishers, 1999, 126-133. http://acl.ldc.upenn.edu/E/E99/

[2] Ginsburg, S. The Mathematical Theory of Context-Free Languages. McGraw-Hill, 1966.

[3] Lothaire, M. Algebraic Combinatorics on Words, Cambridge University Press, 2002.

[4] Markov, A. A., Nagorny, N. M. The Theory of Algorithms. Dordrecht etc., Kluwer Academic Publishers, 1988.

[5] Sardinas, A., Patterson, C. A necessary and sufficient condition for the unique decomposition of coded messages. IRE
Intern. Conv. Record, 8:104-108, 1953.

[6] Марков, А. А. Теория алгорифмов. Труды Математ. инст. им. В. А. Стеклова, 42, Москва-Ленинград, Изд. АН
СССР, 1954.

[7] Успенский, В. А. К проблеме транслитерации русских текстов латинскими буквами. In: Научно-техническая
информация, серия 2, Информационные процессы и системы. 1967, № 7, 12-20 (also in [9], 390-412).

[8] Успенский, В. А. Невто ́н-Ньюто́н-Нью ́тон, или Сколько сторон имеет языковой знак? In: Русистика. Славистика.
Индоевропеистика. Сборник к 60-летию Андрея Анатольевича Зализняка. Москва, "Индрик", 1996, 598-659 (also in
[9], 483-561).

[9] Успенский, В. А. Труды по нематематике. Москва, ОГИ, 2002. http://www.mccme.ru/free-books/usp.htm

Author's Information

Dimiter Skordev – Sofia University, Faculty of Mathematics and Informatics, blvd. J. Bourchier 5, Sofia 1164,
Bulgaria; e-mail: skordev@fmi.uni-sofia.bg

