

International Journal "Information Theories & Applications" Vol.16 / 2009

2

International Journal
INFORMATION THEORIES & APPLICATIONS

Volume 16 / 2009, Number 1

Editor in chief: Krassimir Markov (Bulgaria)

International Editorial Staff

Chairman: Victor Gladun (Ukraine)

Adil Timofeev (Russia) Ilia Mitov (Bulgaria)
Aleksey Voloshin (Ukraine) Juan Castellanos (Spain)
Alexander Eremeev (Russia) Koen Vanhoof (Belgium)
Alexander Kleshchev (Russia) Levon Aslanyan (Armenia)
Alexander Palagin (Ukraine) Luis F. de Mingo (Spain)
Alfredo Milani (Italy) Nikolay Zagoruiko (Russia)
Anatoliy Krissilov (Ukraine) Peter Stanchev (Bulgaria)
Anatoliy Shevchenko (Ukraine) Rumyana Kirkova (Bulgaria)
Arkadij Zakrevskij (Belarus) Stefan Dodunekov (Bulgaria)
Avram Eskenazi (Bulgaria) Tatyana Gavrilova (Russia)
Boris Fedunov (Russia) Vasil Sgurev (Bulgaria)
Constantine Gaindric (Moldavia) Vitaliy Lozovskiy (Ukraine)
Eugenia Velikova-Bandova (Bulgaria) Vitaliy Velichko (Ukraine)
Galina Rybina (Russia) Vladimir Donchenko (Ukraine)
Gennady Lbov (Russia) Vladimir Jotsov (Bulgaria)
Georgi Gluhchev (Bulgaria) Vladimir Lovitskii (GB)

IJ ITA is official publisher of the scientific papers of the members of
the ITHEA® International Scientific Society

IJ ITA welcomes scientific papers connected with any information theory or its application.

IJ ITA rules for preparing the manuscripts are compulsory.
The rules for the papers for IJ ITA as well as the subscription fees are given on www.ithea.org .

The camera-ready copy of the paper should be received by http://ij.ithea.org.
Responsibility for papers published in IJ ITA belongs to authors.

General Sponsor of IJ ITA is the Consortium FOI Bulgaria (www.foibg.com).

International Journal “INFORMATION THEORIES & APPLICATIONS” Vol.16, Number 1, 2009

Printed in Bulgaria

Edited by the Institute of Information Theories and Applications FOI ITHEA®, Bulgaria,
in collaboration with the V.M.Glushkov Institute of Cybernetics of NAS, Ukraine,

and the Institute of Mathematics and Informatics, BAS, Bulgaria.

Publisher: ITHEA®
Sofia, 1000, P.O.B. 775, Bulgaria. www.ithea.org, e-mail: info@foibg.com

Copyright © 1993-2009 All rights reserved for the publisher and all authors.
® 1993-2009 "Information Theories and Applications" is a trademark of Krassimir Markov

ISSN 1310-0513 (printed) ISSN 1313-0463 (online) ISSN 1313-0498 (CD/DVD)

International Journal "Information Theories & Applications" Vol.16 / 2009

25

SOLVING LARGE SYSTEMS OF BOOLEAN EQUATIONS

Arkadij Zakrevskij

Abstract. Systems of many Boolean equations with many variables are regarded, which have a lot of practical
applications in logic design and diagnostics, pattern recognition, artificial intelligence, etc. A special attention is
paid to systems of linear equations playing an important role in information security problems. A compact matrix
representation is suggested for such systems. A series of original methods and algorithms for their solution is
surveyed in this paper, as well as the information concerning their program implementation and experimental
estimation of their efficiency.

Keywords: Solving Boolean equations, large systems, combinatorial search

ACM Classification Keywords: G.2.1 Combinatorics. I.2.8. Problem solving, G.3 Probability and Statistics

Introduction

A special type of systems of logical equations is regarded here, which seems to be very important for applications
in logic design, pattern recognition and diagnostics, artificial intelligence, information security, etc. Such systems
consist of many equations and Boolean variables (up to thousand and more), but with restricted number of
variables in each equation (for example, not exceeding 10). That allows one to represent every equation by a
rather short Boolean vector of its roots, providing a compact description of the system as a whole and efficient
use of vector logical operations.

In that case each function i (x) with k arguments from some system F can be represented by a pair of
Boolean vectors: 2k-component vector vi of function values (using the conventional component ordering) and n-
component vector wi of function arguments.

For instance, if x = (a, b, c, d, e, f, g, h), then the pair of vectors vi = 01101010 and wi = 00101001 represents

the function i(c, e, h) which takes value 1 on four combinations 001, 010, 100 and 110 of argument values and
takes value 0 on all others.

The whole system F can be represented by a pair of corresponding Boolean matrices: (m  2k) matrix V of

functions and (m  n) matrix W of arguments.

Example 1. The system of Boolean equations

1 = a'b'cd'  a'bc'd  ab'c'd

2 = c'd'e'f'  c'd'e'f  cd'e'f'  cd'ef  cde'f  cdef'

3 = e'fgh'  ef'g'h'  ef'gh  efgh'

is represented in matrix form as follows:

 a b c d e f g h

 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 v1 1 1 1 1 0 0 0 0 w1

V = 1 1 0 0 0 0 0 0 1 0 0 1 0 1 1 0 v2 W = 0 0 1 1 1 1 0 0 w2

 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 v3 0 0 0 0 1 1 1 1 w3

International Journal "Information Theories & Applications" Vol.16 / 2009

26

Let us designate these systems as large SLE. It is supposed that in many applications these systems usually
have few roots or none at all.

A series of original methods and algorithms for solving large SLE is presented in this survey, together with the
results of their program implementation. They were published in various papers (see References).

Search Tree Minimization

Two combinatorial methods using tree searching technique could be applied to solve large SLE: the equation
scanning method and the argument scanning method. The first method is implementing consecutive multiplication
of orthogonal DNFs of the equations from a considered system and uses the search tree Te which levels
correspond to equations. The second method realizes a scanning procedure over arguments corresponding to
levels of the search tree Ta. In both cases the run-time is roughly proportional to the size of the tree, i.e. to the
number of its nodes. Two original algorithms were worked out that considerably reduce that number in trees Te
and Ta.

Solving large SLE can be considerably accelerating by the described below methods taking into account only the
matrix of arguments W [1, 2].

Raising efficiency of the equation scanning method. In that method the nodes of i-th level of the search tree
Te represent the roots of the subsystem, constructed from the first i equations. Let us consider the set of

variables, on which this subsystem depends, as Ui = u1  u2 … ui and denote the number of elements in Ui
(in other words, the variables included in the first i equations) as r(i). Then roots of the subsystem under review
are the elements of the r(i)-dimensional Boolean space. Suppose, the functions are random, taking value 1 with
probability p on every combination of argument values, independently of each other.

Affirmation 1. The expected value Me(i) of the number of nodes on the i-th level of tree Te can be calculated
as Me(i) = pi 2r(i).

In particular, the number of nodes on the last level is estimated as Me(m) = pm 2n. (These nodes represent the
solutions of the whole system)

When we include the next equation (given by function fi+1(ui+1)) into the subsystem, the set of considered
variables will expand by the arguments, which are included in fi+1(ui+1) but were not presented in any previous
function. Thus, the number of possible solutions Me(i+1) can increase compared to Me(i). On the other hand,
since each new equation represents a new restriction on the set of solutions, Me(i+1) may be also smaller than
Me(i). The total effect of both tendencies can be represented by the following formula:

Affirmation 2. Me(i+1) = Me(i) p 2r(i+1) – r(i).

This formula shows that the increase in the number of nodes by the transition to the next level depends on the
number of new arguments in fi+1(ui+1). This number is usually much smaller than the total number of variables in
fi+1(ui+1).

The algorithm complexity for finding all solutions of the considered system is proportional to the total number of
nodes in the tree Te: Me = Me(1) + Me(2) +…+ Me(m). The number of nodes at the last level can be determined
unambiguously: Me(m) = pm 2n. However, numbers of nodes on other levels and the total number of nodes Me
depend on the order, in which equations are considered.

We suggest the following method to decrease the algorithmical complexity. All equations are ordered by the
following rule: the next equation must contain the minimum number of new variables. At the first step, the
equation depending on the minimum number of arguments is selected.

International Journal "Information Theories & Applications" Vol.16 / 2009

27

Example 2. Suppose, that p = 0.5 and the distribution of the variables by the equations is given by the matrix W
shown below. Note, that the case p = 0.5 corresponds to the often encountered in practice situation when
characteristic Boolean functions are completely random. Considering the equations in the natural order
(according to the rows of matrix W), we get: Me(1) = 4, Me(2) = 16, Me(3) = 16, etc., with the total estimated
number of the nodes in the tree Me = 67.

i W Me(i)

1 0 1 0 0 0 1 0 1 4

2 1 0 0 0 1 1 1 1 16

3 0 1 1 0 1 0 0 1 16

4 1 0 0 1 0 0 1 0 16

5 0 1 1 0 1 0 0 0 8

6 0 1 0 0 0 1 1 0 4

7 1 0 0 1 0 1 1 0 2

8 0 0 1 0 1 0 0 0 1
 Me = 67

But if we will reorder equations according to the proposed method (using the substitution (8, 5, 3, 1, 6, 2, 4, 7) on
the set of rows), we will considerably decrease the computational complexity: Me(1) = 2, Me(2) = 2, Me(3) = 2,
etc., with the total estimated number of the nodes in the tree Me = 15.

i W Me(i)

1 0 0 1 0 1 0 0 0 2

2 0 1 1 0 1 0 0 0 2

3 0 1 1 0 1 0 0 0 2

4 0 1 0 0 0 1 0 1 2

5 0 1 0 0 0 1 1 0 2

6 1 0 0 0 1 1 1 1 2

7 1 0 0 1 0 0 1 0 2

8 1 0 0 1 0 1 1 0 1
 Me = 15

Affirmation 3. Suppose that p = 0.5; m = n; wij = 1 if i ≤ j, and wij = 0 otherwise. In this case the search tree will
contain 2n nodes for the initial order of the equations, and only n nodes for the optimal order.

Raising efficiency of the argument scanning method. In this method we construct the search tree Ta , which
shows the bifurcation hierarchy by the values of the Boolean arguments x1, x2, …, xn. Each xj corresponds to one
(and only to one) level of the tree, there are n levels in the tree Ta . The nodes on j–th level represent all input

International Journal "Information Theories & Applications" Vol.16 / 2009

28

vectors of the variables x1, x2, …, xi , for which no function of the initial system will have a zero value. Let us
denote by Ma(j) the expected number of nodes on level j.

 m

Affirmation 4. Ma(j) = 2j  S(p, q(i, j)),

 i = 1

where S(p, r) = 1 – (1–p)2r is the probability that the random function with r arguments (having parameter p) is not
equal to 0, and q(i, j) is the number of ones in the i–th row of the matrix W , located to the right from the
component j .

In particular, the number of solutions of the system equals the number of nodes on the last level, which can be
estimated as Ma(n) = 2n pm. The total number of nodes in tree Ta is given by the formula

Ma = Ma(1) + Ma(2) + … + Ma(n).

When the number r of the arguments of a random Boolean function is increasing, the probability S(p, r) that this

function is not constant zero is swiftly going to 1. For example, if p = 0.5, then S(p, r) = 1  2–2r (S(0) = 1/2,
S(1) = 3/4, S(2) = 15/16, S(3) = 255/256, S(4) = 65535/65536, etc.) In practice, we can take S(r) = 1 if r > 3.

In the proposed algorithm we are optimizing the order, in which variables are selected. As the criteria of
minimization, the expected number of nodes in the sequentially considered tree levels is used.

When the next level j is considered and the corresponding argument is selected, the effect of this choice is
estimated in advance. Whenever some specific value of some argument is selected and substituted into the
equation depending on this variable, the number u of the free variables in this equation decreases by one. As a

result, the probability S(u) that the equation can be satisfied, is changed for S(u1), i.e. decreases in

S(u)/S(u1) times. We will use the notation R(u)=S(u)/S(u1), for example, R(1) = 3/2, R(2) = 15/12,
R(3) = 255/240, R(4) = 65535/65280. In practice, we can assume that R(u) = 1 if u > 4.

Affirmation 5. During the transition from level j – 1 to level j the mathematical expectation of the number of nodes

in the level is increasing in 2 /  R(q(i, j)) times, where the product is taken by all i, for which wij = 1.

In the proposed algorithm at each step an argument is selected such that the number of nodes in corresponding
tree level is minimized. The procedure works differently, depending on whether there exists a row in the argument
matrix W containing not more than 4 ones. If all rows in this matrix contain more than 4 ones, we choose rows
with the minimum number of ones, and select the column j having the maximal number of ones in the chosen
rows. The argument xj is taken as the next one, and the j-th column is deleted from the further consideration.
The procedure is repeated until a row will appear which contains not more than 4 ones.

To choose the next argument, we calculate the value  R(q(i, j)), using the already known values of R(1), R(2),

R(3), R(4). The variable j with the maximal value of  R(q(i, j)) is selected.

Example 3. Let us consider the system from the example 1, considering the arguments in the order (x1, x2, x3, x4,
x5, x6, x7, x8). Taking into account the number of ones to the right from the position i, we obtain:

Ma(1) = 2 · S(3) · S(4) · S(4) · S(2) · S(3) · S(3) · S(3) · S(2) = 1.731,
Ma(2) = 4· S(2) · S(4) · S(3) · S(2) · S(2) · S(2) · S(3) · S(2) = 2.874.

International Journal "Information Theories & Applications" Vol.16 / 2009

29

For other j we calculate the following values of Ma(j):

Ma(3) = 3.463; Ma(4)= 5.214; Ma(5)= 3.693;

Ma(6) = 3.560; Ma(7) = 1.687; Ma(8)= 1.000.

The total number of nodes in the tree Ta is calculated as

 Ma = Ma(1) + Ma(2) + … + Ma(8) = 23.223.

Now, we will use another ordering of the arguments, applying the proposed algorithm. First, we will select the

input variable x5 , included into equations 2, 3, 5 and 8, since for j = 5 the value of  R(q(i, j)) for wij = 1 is
maximal (equal to 1.333). We will delete the corresponding (x5) column from the further consideration. At the
second step, variable x3 will be selected. The final optimized order (x5, x3, x2, x8, x6, x7, x1, x4) is represented by
the following column transfer in the matrix W:

 x1 x2 x3 x4 x5 x6 x7 x8 x5 x3 x2 x8 x6 x7 x1 x4
1 0 1 0 0 0 1 0 1 0 0 1 1 1 0 0 0
2 1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 0
3 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0
4 1 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1
5 0 1 1 0 1 0 0 0 1 1 1 0 0 0 0 0
6 0 1 0 0 0 1 1 0 0 0 1 0 1 1 0 0
7 1 0 0 1 0 1 1 0 0 0 0 0 1 1 1 1
8 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0

Let us estimate the complexity of the search tree for the new argument order:

Ma(1) = 2 · S(3) · S(4) · S(3) · S(3) · S(2) · S(3) · S(4) · S(1) = 1.384,

Ma(2) = 4 · S(3) · S(4) · S(2) · S(3) · S(1) · S(3) · S(4) · S(0) = 1.390.

Similarly we calculate the next values Ma(j): Ma(3) = 1.313; Ma(4) = 1.395; Ma(5) = = 1.395; Ma(6) = 1.318; Ma(7)
= 1.125; Ma(8) = 1.000. Thus, we see that the expected value of the number of nodes in the tree Ta equals
10.620, which is more than twice less than it was for the initial order of arguments.

The program implementation and computer experiments confirm the high efficiency of the both methods. They
show also that the argument scanning method greatly surpasses in efficiency the other one.

The search for solutions can be greatly facilitated by preliminary reducing the number of roots in separate
equations, which, in its turn, could lead to decreasing the number of variables in a considered system and the
number of equations. Three reduction methods are suggested for that, called local reduction, spreading of
constants and technique of syllogisms [3].

The main idea of these methods consists in analyzing one by one equations of the system F, revealing there so
called k-bans (affirmations about existence of some empty interval of the rank k in the Boolean space over the
equation variables – were the equation has no root), and using them for reducing the sets of roots in other
equations which, in its turn, contributes to finding new bans. That process has the chain character and can result
in reducing the number of equations and variables in the system F. The method of constants spreading deals with
1-bans, the technique of syllogisms operates with 2-bans (using original deduction procedures for solving
polysyllogisms), and the method of local reduction is using bans of arbitrary rank. Each of them has its own area
of preferable application.

International Journal "Information Theories & Applications" Vol.16 / 2009

30

Local Reduction

This method suggested in [4] has the local nature. That means that the possibility of reduction is looked for when

examining various pairs of functions i (ui) and j (uj) from the system F with intersecting sets of arguments:

ui,j = ui  uj  .

Let us introduce some denotations. Consider the characteristic set Mi of function i (ui) in the space of

arguments from the set ui, and let a be its arbitrary element: a  Mi . The latter is a k-component Boolean

vector, where k is the number of arguments of function i (ui): k = | ui |. Let v be an arbitrary subset from

ui (v  ui) and a / v  the projection of element a onto v, i.e. the vector composed of those components of vector
a which correspond to variables included in set v.

The set of all different projections of elements from Mi on v is named the projection of set Mi on v and

designated as Mi / v. Let Mi,j be the intersection of sets Mi / ui,j and Mj / ui,j, and Mi/j  the set of all such elements
from Mi which projections on ui,j belong to the set Mi,j .

For example, if ui = (a, b, c, d, e), uj = (c, d, e, f, g, h), Mi = (01101, 11010, 10011) and
Mj = (101110, 001101, 010010), then ui,j = uj,i = (c, d, e), Mi,j = Mj,i = (101, 010), Mi/j = (01101, 11010) and
Mj/i = (101110, 010010).

Let us introduce the operation Mi := Mi/j of changing Mi for Mi/j .

Affirmation 6. For any i, j = 1, 2, ..., m the operation Mi := Mi/j is an equivalence transformation of system F,
preserving the set of its roots.

Note that the application of this operation to the shown above example reduces each set Mi and Mj by one
element.

Let us say that operation Mi := Mi/j is applicable to an ordered pair of functions (i, j) if Mi  Mi/j. The probability
of its applicability rises with increasing of the cardinality |ui,j| of set ui,j and goes down when |ui,j| decreases.
For instance, it is rather high when |Mj | < 2s, where s = |ui,j |.

Consider now the procedure of sequential execution of this operation on pairs where it can be applied. It could
terminate with reducing some of the sets Mi down to the empty set, which will mean that system F is
inconsistent, or some set of reduced functions will be found where the given operation cannot be applied to any
pair. This procedure is called the local reduction of system F.

Let us demonstrate the described algorithm of local reduction using the following example of system F.

 a b c d e f g h

 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 v1 1 1 1 1 0 0 0 0 w1

V = 1 1 0 0 0 0 0 0 1 0 0 1 0 1 1 0 v2 W = 0 0 1 1 1 1 0 0 w2

 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 v3 0 0 0 0 1 1 1 1 w3

Regard in succession pairs of functions, beginning with the first one: (1, 2). Using the operation of component-
wise conjunction of corresponding rows of matrix W, we find for this pair common arguments c and d. Going
through all combinations of values of these variables, we examine defined by them intervals in the space of

arguments of function 1 (this space is presented by vector v1) and find between them intervals free of values 1
of this function. Then we delete all 1s in corresponding intervals of vector v2 .

Vector representation of intervals and component-wise logical operations are used during this procedure.
For example, considering combination 00 of values of variables c and d, we construct vector
1000 1000 1000 1000 which marks with 1s the corresponding interval in the space of variables a, b, c, d. Its

International Journal "Information Theories & Applications" Vol.16 / 2009

31

conjunction with vector v1 does not contain ones, therefore equation 1 = 1 has no roots in this interval. The

respective interval in the space of arguments of function 2 is represented by vector 1111 0000 0000 0000,
inasmuch as variables c and d take now left positions. All ones contained in this interval are deleted from
vector v2, so the latter receives the value 0000 0000 1001 0110.

These operations could be presented in a more compact form, by the formula

C' d' 1 = 0  v2 := 0000 0000 1001 0110 .

Continuing the reduction algorithm, we perform one by one the following operations presented similarly:

c d 1 = 0  v2 := 0000 0000 1001 0000 ,

c' d 2 = 0  v1 := 0010 0000 0000 0000

e' f 2 = 0  v3 := 0000 0000 1001 0010

e f' 2 = 0  v3 := 0000 0000 0000 0010

e' f' 3 = 0  v2 := 0000 0000 0001 0000

As a result, the initial system of Boolean functions is reduced to the following one:

 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 v1

V = 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 v2

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 v3

from where the unique root of the system is easily obtained: 00101110.

Spreading of Constants

This method can be regarded as a simplified version of the local reduction. It can be efficiently used when the

number of roots in some equations k = 1 is very small. In that case it is enough to look only for 1-bans regarding
separate literals xi and xi' and checking them consecutively for satisfying equations.

When xi  k = 0 for function k in some equation of the system, 1-ban xi = 0 is found. In that case value 0 is

assigned to variable xi (value 1 in the case xi'  i = 0), and the latter is changed for constant 0 (or 1) in all other
equations. In such a way finding constants is followed by their spreading over the whole system F. Replacing
some variables by constants usually decreases the number of roots in regarded equations which, in its turn, helps
to discover new constants. So, the process of constants spreading has the cyclic chain nature. As a result, the

dimension of processed equations is decreased, sometimes down to zero  when all variables of the regarded

equation receive definite values. If function k turns into 1, the corresponding equation is deleted from the

system; if k turns into 0, it becomes evident that the system is inconsistent.

Simple enough, this method turned out to be very efficient, being applied to some problems of cryptology. A
special problem of cryptanalysis of the mechanical rotor encryption machine Hagelin M-209-B, which was used in
several forms by Germans during the second world war, was investigated in [5]. It was shown that its

International Journal "Information Theories & Applications" Vol.16 / 2009

32

cryptanalysis can be reduced to solving a definite system of many Boolean equations (about five hundred) each

of which contains six Boolean variables, meanwhile the general number of variables equals 131  the set of their
values constitutes the sought-for key. To solve this system a method was proposed in [5] based on using
Reduced Ordered Binary Decision Diagrams (ROBDDs) for representation of the regarded functions. Its
computer implementation on Pentium Pro 200 showed that under some suppositions it enables to find the key in
several minutes.

Application of the method of spreading of constants using vector representation of the considered Boolean
functions and taking into account the specific of the regarded system of logical equations turned out to be
considerably more efficient. It accelerates the search for the key more than in thousand times [6].

Technique of Syllogisms

Here 2-bans are looked-for and used in the reduction procedure. Besides, the latter takes into account all logical
consequences deduced from the set of found 2-bans by syllogisms [7]. An improved technique of polisyllogisms
is applied for that [8].

Let us regard equation  (z1, z2, …, zk) = 1 with function  taking value 1 on s randomly selected inputs.
When s is small, it is possible to find some constant, which prohibits the value of some variable (1-ban). But it is
more probable to reveal a prohibition on some combination of values of two variables (2-ban), which determines
the corresponding implicative regularity, or connection between these variables. For example, connection "if a,

then not b" prohibits combination of values a = 1, b = 1. It could be revealed in  if ab = 0. For convenience,
represent this ban by product ab (having in mind equation ab = 0).

In a similar way, 2-bans ab', a'b, a'b' are defined. They are interpreted easily as general affirmation and negation

category statements. By that besides three such statements of Aristotle syllogistic (ab'  all A are B, a'b  all B

are A, ab  none of A is B) the fourth is also used: a'b'  none of objects is A and is not B. Such a statement
was not considered by Aristotle, inasmuch as he did not regard empty classes [9].

Suppose, that by examining equations of the system F one by one, we have found a set P of 2-bans. Let us
consider the task of closing it, i. e. adding to it all other 2-bans which logically follow from P (so called
resolvents of P). This task is equivalent to the polysyllogistic problem. Denote the resulting closed set of 2-bans
as Cl(P). A method to find it is suggested below. It differs from the well-known method of resolution and its
graphical version by application of vector-matrix operations which speed up the logical inference.

Let Xt1 and Xt0 be the sets of all literals that enter 2-bans contained in F together with literal xt or xt,
correspondingly. We introduce operator Clt of partial closing of set P in regard to variable xt, extending this set

by uniting it with direct product Xt1  Xt0 containing results of all possible resolutions by this variable.

Affirmation 7. Clt (P) = P  Xt
1  Xt

0  Cl(P).

Affirmation 8. Cl(P) = Cl1 Cl2 … Cln (P) .

In such a way, the set P can be closed by separate variables, one by one.

The set P can be represented by a square Boolean matrix P of the size 2n by 2n, with rows pt1, pt0 and columns
pt1, pt0 corresponding to literals xt, xt', t = 1, 2, …, n. Elements of matrix P correspond to pairs of literals, and non-
diagonal elements having value 1 represent discovered 2-bans. So, the totality of 1s in row pt1 (as well as in
column pt1) indicates set Xt1, and the totality of 1s in row pt0 (column pt0) indicates set Xt0. Using vector
operations, we can construct the matrix P+, presenting the result of closing operation: P+ = Cl(P) .

For example, if x = (a, b, c, d) and 2-bans ab', ac, a'd', bc' are found forming set P, then

International Journal "Information Theories & Applications" Vol.16 / 2009

33

a a' b b' c c' d d' a a' b b' c c' d d'

0 0 0 1 1 0 0 0 a c 0 c 1 1 b 0 c a

0 0 0 0 0 0 0 1 a' 0 0 0 0 0 0 0 1 a'

0 0 0 0 0 1 0 0 b c 0 0 0 0 1 0 c b

 P = 1 0 0 0 0 0 0 0 b' P+ = 1 0 0 0 0 0 0 a b'

1 0 0 0 0 0 0 0 c 1 0 0 0 0 0 0 a c

0 0 1 0 0 0 0 0 c' b 0 1 0 0 0 0 b c'

0 0 0 0 0 0 0 0 d 0 0 0 0 0 0 0 0 d

0 1 0 0 0 0 0 0 d' c 1 c a a b 0 c d'

 the bans-consequences are marked in matrix P+ by symbols of variables by which the corresponding resolutions were
executed.

The closed set Cl(P) could be found also by the increment algorithm of expansion of P : every time when a new
2-ban p is added by a special operation ins(p, P) all resolvents are included in P, too. In that case after each
step the set P will remain closed: P = Cl(P).

Operation ins(p, P) is defined as follows.

Affirmation 9. If P = Cl(P), than Cl(P {p}) = P  D, where

D = ({x}  X0)  ({y}  Y0), if p = xy ,

D = ({x}  X0)  ({y}  Y1), if p = xy ,

 D = ({x}  X1)  ({y}  Y0), if p = xy ,

D = ({x}  X1)  ({y}  Y1), if p = xy.

Consider now the problem of finding all prime bans (which do not follow from one another) deduced from system
P. It is known that no set of 2-bans can produce any bans of higher rank. But it can produce some 1-bans,
prohibiting definite values of separate variables.

Affirmation 10. All 1-bans deduced from set P are represented by 1-elements of the main diagonal of matrix P+.

In the regarded example 1-bans a and d' are presented in such a way.

Affirmation 11. If the pair of 1-bans x and x' is found for some variable x, the system F is inconsistent.

Note that inconsistency of F follows from inconsistency of P, but not vice versa.

Based on the technique of syllogisms an efficient reduction method was developed, dealing with a set of logical
equations F, empty at the beginning. It examines the equations in cyclic order, reduces the set of roots of the
current equation fj = 1 by considering bans enumerated in P (prohibited roots are deleted) and looks there for
new 2-bans not existing in P. These bans are added to P, at the same time operation of closing P is performed.

By that some variables can receive unique values  when 1s appear on the main diagonal of matrix P (1-bans
are found). The procedure comes to the end when inconsistency is revealed (0-ban is found represented by a
pair of 1s on the main diagonal of P) or when processing m equations one by one turns out to be unsuccessful. In
that case we have as a result a reduced system of equations equivalent to the initial one.

International Journal "Information Theories & Applications" Vol.16 / 2009

34

Computer Experiments

Extensive computer experiments were conducted on PC Pentium 100 to evaluate the efficiency and applicability
of the suggested reduction methods [10, 11]. A series of pseudo-random consistent (having at least one root)

systems of Boolean equations with given parameters (m  the number of equations, n  the total number of

variables, k  the number of variables in each equation and p  the relative number of roots in equations) was
generated [12] and subjected to the reduction procedures programmed in C++. Two important results were
obtained by that.

First, the avalanche effect of reduction was revealed experimentally, both for the local reduction and the
technique of syllogisms. When we conduct experiments for fixed values of p, n and k, gradually increasing m, it
turns out that for some crucial value of m an avalanche occurs. It means that the number of roots in the
equations dramatically decreases in such a high degree that it could be easy to find the complete solution of the
regarded system. This effect is well shown on Table 1, where partial results of some experiments are presented.
Note that q s the average number of remaining roots in one equation after the reduction. Evidently, if q = 1, the
system has only one root, and it is found.

 Table 1. Examples illustrating avalanche effect of the reduction procedures

Local reduction

Experiment 1. p = 1/2, n = 50, k = 5. (m: q) = 113: 8.19, 114: 8.21, 115: 1.

Experiment 2. p = 1/2, n = 50, k = 6. (m: q) = 298: 30.02, 299: 1.

Experiment 3. p = 1/4, n = 100, k = 6. (m: q) = 167: 13.88, 168: 1.

Experiment 4. p = 1/4, n = 100, k = 7. (m: q) = 390: 28.53, 391: 1.

Experiment 5. p = 1/4, n = 200, k = 6. (m: q) = 384: 14.29, 385: 1.

Experiment 6. p = 1/8, n = 200, k = 6. (m: q) = 72: 7.93, 73: 1.09.

Experiment 7. p = 1/8, n = 200, k = 7. (m: q) = 196: 13.25, 197: 1.

Technique of syllogisms

Experiment 8. p = 1/2, n = 50, k = 5. (m: q) = 74: 13.32, 75: 1.07.

Experiment 9. p = 1/4, n = 100, k = 6. (m: q) = 85: 14.25, 86: 1.05.

Experiment 10. p = 1/8, n = 200, k = 7. (m: q) = 128: 15.76, 129: 1.02.

Second, the existence of avalanche effect enables practically for every combination of values of parameters p, n,
k to find the crucial value mc indicating the number of equations m at which the system collapses under the
influence of the reduction procedure. Assume that such a collapse occurs when q becomes less than 1.1.

That crucial value mc is shown below (the first number in a pair playing the role of the table element) both for
local reduction and technique of syllogisms, for p = 1/2, 1/4 and 1/8, as the function of n and k. The run-time t
in seconds is presented by the second number in the pair. For instance, if n = 80 and k = 7, then for local
reduction and p = 1/4 it follows that mc = 245 and t = 54 s. These results show that the area of applicability of
the suggested method is rather broad, up to thousand variables under certain conditions.

International Journal "Information Theories & Applications" Vol.16 / 2009

35

Table 2. Dependence of the crucial value mc of the number of equations m and the run-time t on the total
number of variables n, the number of variables k and the density of roots p in separate equations

Local reduction
 n k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

20 38-1 30-2 34-6 41-10 37-39 64-173 60-431
40 67-3 74-8 195-57 426-404
80 144-10 273-47 1355-989

 p = 1/2 160 372-33 1094-973
320 655-96
640 1245-358
1280 1500-647

20 14-0 13-0 10-0 13-0 13-2 13-5 17-5
40 20-0 26-1 26-1 45-4 113-41 204-230 431-2493
80 40-1 46-1 78-5 245-54 1031-1368

 p = 1/4 160 85-2 123-4 314-36 1226-648
320 250-10 250-17 821-174
640 550-42 475-60 2265-1146
1280 1100-179 1000-251
2560 2200-995

20 10-0 10-0 10-0 10-0 10-0 10-1 10-3
40 25-0 21-0 15-1 17-1 22-2 36-8 52-27
80 35-1 30-1 25-1 43-2 123-18 256-130 1008-2598

 p = 1/8 160 82-1 67-1 74-2 134-9 662-267 2287-4000
320 199-4 166-5 158-6 346-42
640 415-19 329-15 352-29 705-129
1280 749-74 736-96 742-137 1568-673
2560 1965-633 1802-626 1423-565

Technique of syllogisms
n k = 4 k = 5 k = 6 k = 7 k = 8

20 30-0 39-1
40 42-0 73-2
80 124-2 217-7

 p = 1/2 160 217-5 615-23
320 573-25 1446-61
640 1191-166
1280 2438-1371

20 14-0 13-0 9-1 471-33
40 28-0 20-2 24-2 321-25
80 50-1 47-1 39-4 620-53

 p = 1/4 160 129-3 109-5 166-12 1825-142
320 296-24 333-26 452-44
640 797-201 663-186 894-220
1280 1371-1585

20 10-0 10-0 10-0 10-1 86-11
40 18-0 21-1 14-1 27-3 177-23
80 40-0 31-1 32-2 46-5 357-52

 p = 1/8 160 111-4 78-4 79-7 101-15 917-125
320 271-26 267-29 212-32 227-46
640 596-226 537-223 409-166 413-187
1280 1027-1701

International Journal "Information Theories & Applications" Vol.16 / 2009

36

Systems of Linear Logical Equations – Finding Shortest Solutions

In general case any system of linear logical equations (SLLE) can be presented as

 a11x1  a12x2  … a1nxn = y1 ,

 a21x1  a22x2  … a2nxn = y2 ,

 am1x1  am2x2  … amnxn = ym ,

or in a more compact form of one matrix equation

A x = y.

Here A is a Boolean (mn)-matrix of coefficients, x = (x1, x2, …, xn) – a Boolean vector of unknowns and y = (y1,
y2, …, ym) – a Boolean vector of free terms. The operation of multiplying matrix A by vector x is defined as
follows:

 n

 ai jxj = yi , i = 1, 2, …, m.

j = 1

Suppose A and y are known and vector x is to be found. It is accepted usually, that the problem consists in
finding a root of the system – a value of vector x, satisfying all equations, i.e. turning them into identities.
However, when several roots exist, a problem arises to choose one of them, optimal in some sense.

Alongside with two parameters m and n the third parameter of an SLLE is important – the rank r, i.e. the maximal
number of linearly independent columns in matrix A. Remind, that a set of Boolean vectors is called linearly
independent if the component-wise sum (modulo 2) of any of its elements differs from zero. It is known that the
rank equals as well the maximal number of linearly independent rows in the same matrix. The relations between
parameters m, n and r determine if the system has some roots and how many of them.

In case n = m = r the system has exactly one root and is called defined, or deterministic. When n < m, the
system could have no roots and is called in this case over-defined, or inconsistent, or contradictory. When n > m,
the system has 2n-r roots and is called undefined, or non-deterministic.

In this section the last case is considered, and the optimization task of finding a shortest solution (with minimum
number of ones in vector x) is to be solved. That task has important application at design of linear finite automata
[13] and logic circuits synthesized in Zhegalkin basis and possessing such attractive properties, as good
testability and compactness at implementation of arithmetic operations [14]. It is useful also when solving
information security problems [15, 16].

A simplest algorithm. Let us suppose that a regarded system is undefined and m = r, i.e. all rows of matrix of
coefficients A are linearly independent. In that case a shortest solution could be found by means of selecting from
matrix A one by one all different combinations of columns, consisting first of 1 column, then of 2 columns, etc.
and examining them to see if their sum equals vector y. As soon as it happens, the current combination is
accepted as the sought-for solution.

International Journal "Information Theories & Applications" Vol.16 / 2009

37

That moment could be forecasted. If the weight of the shortest solution (the number of 1s in vector x) is w, the
number N of checked combinations is defined approximately by the formula

 w

 N =  Cni

 I = 0

and could be very large, as is demonstrated below.

It was shown in [17] that the expected weight  of the shortest solution of an SLLE with parameters m and n can

be estimated before finding the solution itself. We represent this weight as the function  (m, n). First we find the

mathematical expectation  (m, n, k) of the number of solutions with weight k. We assume that the considered
system was randomly generated, which means that each element of A takes value 1 with the probability 0.5 and
any two elements are independent of each other. Then the probability that a randomly selected column subset in
matrix A is a solution equals 2-m (probability that two randomly generated Boolean vectors of size m are equal).
Since the number of all such subsets having k elements equals Cnk , we get:

 (m, n, k) = Cnk 2-m, where Cnk = n! / ((n-k)! k!).

Similarly, we denote as  (m, n, k) the expected number of the solutions with weight not greater than k:

 k

  (m, n, k) =  Cni 2-m.

 i = 0

Now, the expected weight  of the shortest solution can be estimated well enough by the maximal value of k, for

which  (m, n, k) < 1:

 (m, n) = k,

where  (m, n, k) < 1   (m, n, k+1)

For example, the values of  and  for the system of 40 equations with 70 variables and the values of k from 7
to 13 are shown in Table 3.

k  

7 0.001 0.001
8 0.009 0.010
9 0.059 0.069
10 0.361 0.430
11 1.968 2.398
12 9.676 12.074
13 43.170 55.244

International Journal "Information Theories & Applications" Vol.16 / 2009

38

It is clear enough that the weight of the shortest solution for this system will be probably equal to 10.

Unfortunately, the described above simple algorithm could appear too difficult to implement. Regarding another

example with m = 100 and n = 130 we find that  = 31, and the number N of checked combinations is about 1030.
Examining them with the speed of one million combinations per second we need about
30 000 000 000 000 000 years to find the solution. Too much!

Gaussian method.The well-known Gaussian method of variables exclusion [18] was developed for solving
systems of linear equations with real variables, and is adjusted here for Boolean variables. It enables to avoid
checking all 2n subsets of columns from Boolean matrix A which have up to w columns, when only one of 2n-m
regarded combinations presents some root of the system.

Its main idea consists in transforming the extended matrix of the system (matrix A with the added column y) to
the canonical form. A maximal subset of m linear independent columns (does not matter which one) is selected
from A and by means of equivalent matrix transformations (adding one row to another) is transformed to I-

matrix, with 1s only on the main diagonal. That part is called a basic, the rest n  m columns of the transformed
matrix A constitute a remainder. The column y is changed by that, too.

According to this method the subsets of the remainder are regarded, i.e. combinations selected from the set
which has only n – m columns (not all n columns!). It is easy to show that every of these combinations enables to
get a solution of the considered system. Indeed, any sum (modulo 2) of its elements can be supplemented with
some columns from I to make it equal to y.

When we are looking for a shortest solution (solution with the minimum weight) using this method, described in
detail in [19], we have to consider different subsets of columns from the remainder, find the solution for each such
subset and select a subset, which generates the shortest solution. If it is known that the weight of the shortest
solution is not greater than w, then the level of search (the cardinality of inspected subsets) is restricted by w.

Note that if w  n – m, then all 2n–m subsets must be searched through.

For the same example (m = 100 and n = 130) N  109, which means that the run-time of Gaussian method is
about 17 minutes.

Decomposition method. An additional gain can be received by decomposition of the process of solution, at
which instead of one canonical form of matrix A several canonical forms are considered. That idea was realized
before by the author who suggested a decomposition method for finding shortest solutions [17]. That method is
based on constructing a set of different but equivalent canonical forms of the regarded SLLE and solving them in
parallel until a shortest solution is found. The run-time of the implementation program depends much on the level
of combinatorial search, and the lowering of this level can greatly accelerate the search process.

Let us assume that we can find q maximal subsets of linear independent columns in matrix A, such that the

corresponding remainders do not intersect. In this case n  q(n – m). The following method can be used, which
was called the method of non-intersecting remainders.

Let us construct the set Q, consisting of q canonical forms, such that the basics of these forms are obtained using
the considered subsets. We will search for the optimal solution within the set Q, with the subsequent increase in
the level of search up to some value.

Affirmation 12. A canonical form always exists in Q, such that a shortest solution can be found on the search

level not greater than  /q .

International Journal "Information Theories & Applications" Vol.16 / 2009

39

Affirmation 13. A shortest solution for the given system can be found by the subsequent consideration of the

remainders of the canonical forms from the set Q, restricting the search level by the value  (w  1)/q , where w
is the weight of the shortest already found solution.

Based on these statements the decomposition method was proposed to find a shortest solution of a system of
linear logical equations. Using this method we search through the subsets in all remainders first on level 0, then

on level 1, etc. until the level of search reaches  (w  1)/q (the nearest integer from below).

Affirmation 14. The number Nr(m, n) of the subsets of the columns, which are considered using the not-
intersecting remainders method, is defined by the formula:

 p

Nr(m, n) = q  Cn-mi ,
i = 0

where p =   (m, n) / q .

For the same example (m = 100 and n = 130), q = 4,  = 31 and p =  31/4  = 7. In this case Nr  107, that
means that the run-time of this method is about ten seconds.

Recognizing short solutions. A much bigger progress in the run-time saving can be achieved in the case when

some short solution exists, with weight w perceptibly smaller than  [19].

Such a solution which satisfies the relation w <  or even w <   1 could be immediately recognized and
accepted without any additional proof. That enables to increase considerably the size of regarded and solved
systems, which is measured in number of equations and variables (m and n).

Consider, for example, a random SLLE with m = 300 and n = 350 with expected weight of a shortest solution 
= 101. In general case such solution could be found on the level of search 21, and we should spend about 61
years to find it by the decomposition method (examining one million combinations per second). However, when a
solution with weight 70 exists, it can be found and recognized on the level of search 7 in 7 minutes, and a solution
with weight 35 can be found on level 2 in only 0.5 seconds.

Randomized parallelization. A new version of the decomposition method was suggested in [20, 21], in which a
set of canonical forms is prepared beforehand, all different but equivalent to the given one. They have various
basics specified by some maximal linearly independent subsets of columns of matrix A, selected at random,
independently of each other. In such a way the process of looking for a shortest solution is randomized. The
number q of used canonical forms could be arbitrary, being chosen by some additional considerations.

A solution is searched in parallel over all these forms, first at the level 0 of exhaustive search, then at the level 1,

etc., until at the current level k a solution with weight w, satisfying condition w <   1 will be found. With raising
q this level k can be reduced, which reduces the run-time as well.

Suppose there exists a solution with weight w. The chances to detect it at level k of exhaustive search can be

estimated as follows. Consider an n-component Boolean vector a, with a randomly selected (n  m)-component
sub-vector a'. There exist Cnw (the number of different combinations from n by w) values of vector a each of which
has exactly w ones. Let us assume that all of them are equiprobable. The number of those of them, which have

International Journal "Information Theories & Applications" Vol.16 / 2009

40

exactly k ones in vector a' (k  n  m by that), is evaluated by the formula Cn-mkCmw-k, and the number Nk of those
which have no more than k ones in vector a' is evaluated by the formula

k

Nk =  Cn-mj Cmw-j

j = 0

Evidently,

min (w, n)

Cnw =  Cn-miCmw-i

i = 0

and the formula

P = 100 Nk / Cnw

shows the percentage of situations wgere a short solution with weight w can be found at the level of search k.

For example, in Table 4 are shown the calculated values received by P for different levels of search k at m = 420, n = 500
and w = 75.

The following conclusion could be deduced from that table. Preparing beforehand q = 100 random canonical
forms of the considered SLLE with given parameters, we could hope to find the solution on level 5 or 6. In that
case about 25 or 300 million combinations should be checked for every of 100 canonical forms.

Table 4. Evaluation of chances to detect a shortest solution at given level of search k

(m = 420, n = 500 and w = 75).

 k 1 2 3 4 5 6 7 8 9 10 11 12 13

 P 0.00 0.01 0.06 0.23 0.85 2.41 5.62 11.27 19.84 23.12 36.36 50.00 62.34

Programming and experiments. The suggested randomized parallel algorithm was programmed and verified
(С++, PC COMPAC Presario – processor Intel Pentium III, 1000 MH). The dependence of the run-time T on the
number q of randomly selected canonical forms was investigated for different systems of linear equations. Some
results are presented below.

Thirty different random SLLEs with m = 900 and n = 1000 were generated (each having a solution with weight
w = 100) and solved, using q randomly chosen canonical forms for every system, for different q: 1, 10, 30 and
300. The following parameters of the solution process were measured and shown in Table 5:

N – the ordinal number of the solved SLLE, L – the level of search at which the solution was found, F – the
number of canonical form where the solution was found, T – the time spent for finding the solution (measured in
seconds (s), minutes (m), hours (h), days (d) and years (y).

For instance, the short solution with w = 100 was found for SLLE number 22 in 6 minutes, at the level of search 3
while solving the canonical form number 190.

Note that the last parameter T was found not immediately but forecasted according to the method described in
[22], which changes the real solution process for a virtual one. That saves much time spent for the experiment.

The positive result of increasing the number q of canonical forms is evident: at q = 300 every of the considered 30

examples is solved in several minutes  instead of many (thousands sometimes) years at q = 1.

International Journal "Information Theories & Applications" Vol.16 / 2009

41

Solving Over-defined Systems

It can appear, that the regarded SLLE has no root – when it is over-defined (inconsistent, or contradictory, when
usually m > n). In that case it is possible to put the task of finding a value of vector x, fitting to maximum number
of the equations and accepted therefore as a solution of the system. Such task arises at development of
information security systems and can be interpreted as follows. Suppose, the appropriate value of vector y is
received for given A and x, and then distorted (in components marked by ones in the vector of distortions e). As a

result a vector z = y  e appears, whereas x and y are "forgotten". It is required to restore the initial situation on
known now values A and z.

This task was solved in [23], where it was reduced to finding a shortest root of an undefined SLLE obtained from
the initial over-defined SLLE by appropriate transformation of matrix A and vector y. The boundaries of correct
setting of the task were defined in [16], within which the values of x and y can be restored practically uniquely. A
new method of solution of the given task was offered in [24], based on compact representation of the processed
information and usage of the procedure of random sampling. The given over-defined SLLE is converted by that to
other over-defined SLLE equivalent to initial one but solved more easily.

Table 5. The results of solving undefined SLLEs with parameters n = 1000, m = 900, w = 100.
 q=1 q=10 q=30 q=300

N L F T L F T L F T L F T
1 1 8 7d 9 6 16h 9 6 18h 33 4 19m
2 1 9 69d 8 6 14h 16 5 2h 254 2 4m
3 1 10 2y 7 7 7d 28 6 2d 234 2 4m
4 1 13 776y 3 6 5h 3 6 8h 117 3 5m
5 1 3 4s 1 3 4s 1 3 5s 1 3 4m
6 1 10 2y 5 7 5d 26 5 3h 56 2 4m
7 1 12 112y 9 4 3m 9 4 3m 57 3 5m
8 1 8 7d 10 5 1h 10 5 1h 106 3 5m
9 1 12 112y 10 5 1h 28 4 10m 141 3 6m
10 1 9 69d 2 6 4h 2 6 6h 95 2 4m
11 1 13 776y 7 8 82d 15 4 5m 50 2 4m
12 1 13 776y 9 8 104d 14 5 2h 117 3 5m
13 1 10 2y 8 6 14h 8 6 16h 35 3 4m
14 1 6 58m 1 6 2h 1 6 4h 39 3 4m
15 1 6 58m 1 6 2h 11 5 1h 134 3 6m
16 1 14 4954y 2 8 27d 28 4 10m 205 3 7m
17 1 6 58m 1 6 2h 14 5 2h 49 3 4m
18 1 10 2y 2 7 2d 27 5 3h 285 2 4m
19 1 13 776y 8 7 8d 8 7 9d 84 3 5m
20 1 10 2y 2 6 4h 2 6 6h 203 4 1,3h
21 1 8 7d 7 5 45m 7 5 52m 93 4 39m
22 1 7 13h 10 6 17h 27 4 9m 190 3 6m
23 1 12 112y 2 5 13m 16 2 4s 16 2 4m
24 1 15 29185y 4 7 4d 24 6 2d 226 2 4m
25 1 10 2y 2 6 4h 2 6 6h 46 3 4m
26 1 13 776y 9 7 9d 16 5 2h 112 4 45m
27 1 10 2y 6 8 71d 16 4 6m 281 3 8m
28 1 12 112y 7 8 82d 18 6 1d 87 3 5m
29 1 12 112y 6 4 2m 6 4 2m 254 2 4m
30 1 12 112y 7 8 82d 22 6 2d 31 4 18m

Sum: 38704y 1,3y 20d 5,3h

International Journal "Information Theories & Applications" Vol.16 / 2009

42

Bibliography

1. Zakrevskij A., Zakrevski L. Solving systems of logical equations using search tree minimization technique. – Proceedings
of the PDPTA’02 International Conference, June 24-27, 2002, Las Vegas, USA. – pp. 1145-1150.

2. Zakrevskij A., Vasilkova I. Reducing search trees to accelerate solving large systems of Boolean equations. – Boolean
Problems // 5-th International Workshop, Sept. 19-20, 2002, Freiberg (Sachsen). – pp. 71-76.

3. Zakrevskij A. Reduction algorithms for solving large systems of logical equations. – Computer Science Journal of
Moldova, 2000, v. 8, No 1. – pp. 3-15.

4. Zakrevskij A.D. Solving systems of logical equations by the method of local reduction. – Doklady NAN B, 1999, v. 43, No
5, pp. 5-8. (in Russian).

5. Baumann M., Rohde R., Barthel R. Cryptanalysis of the Hagelin M-209 Machine. – 3rd International Workshop on Boolean
Problems, Sept. 17-18, 1998, Freiberg (Sachsen), pp. 109-116.

6. Zakrevskij A.D., Vasilkova I.V. Cryptanalysis of the Hagelin machine by the method of spreading of constants. –
Proceedings of the Third International Conference on Computer-Aided Design of Discrete Devices (CAD DD'99), Minsk,
November 10-12, 1999, vol. 1. – pp. 140-147.

7. Zakrevskij A.D. Solving large systems of logical equations by syllogisms. – Doklady NAN B, 2000, v. 44, No 3, pp. 40-42
(in Russian).

8. Zakrevskij A.D. To formalization of polysyllogistic. – Logical Inference, Moscow: Nauka, 1979, pp.300-309 (in Russian).
9. Lukasiewich J. Aristotle syllogistic from the point of view of modern formal logic. – Moscow, 1959 (in Russian).
10. Zakrevskij A., Vasilkova I. Reducing large systems of Boolean equations. – 4-th International Workshop on Boolean

Problems, September 21-22, 2000, Freiberg, Germany. – pp. 21-28.
11. Zakrevskij A. D. Solving large systems of logical equations. – Sixth ISTC Scientific Advisory Committee Seminar

“Science and Computing”, Moscow, Russia, 15-17 September 2003. – Proceedings, volume 2, pp. 528-533.
12. Zakrevskij A.D, Toropov N.R. Generators of pseudo-random logical-combinatorial objects in C++. - Logical Design, No 4,

1999, Minsk, Institute of Engineering Cybernetics, pp. 49-63 (in Russian).
13. Gill A. Linear sequential circuits. McGraw-Hill Book Co., New York, 1966.
14. Zakrevskij A.D., Toropov N.R. Polynomial implementation of partial Boolean functions and systems. – Moscow, URSS,

2003 (in Russian).
15. Balakin G.V. Introduction into the theory of random systems of equations. – Proceedings on discrete mathematics,

Moscow, TVP, 1997, vol. 1, pp. 1-18 (in Russian).
16. Zakrevskij A. Solution of a system of linear logical equations with distorted right members – when it could be found. –

New Information Technologies. Proceedings of the Fifth International Conference NITe’2002, Minsk, BSEU. – Vol. 1,
pp. 54-58.

17. Zakrevskij A. D., Zakrevski L. Optimizing solutions in a linear Boolean space – a decomposition method // Proc. of
STI '2003, Orlando, Florida, USA, July 2003, pp. 276-280.

18. Gauss C.F. Beitrage zur Theorie der algebraischen Gleichungen. – Gött., 1849
19. Zakrevskij A.D. Looking for shortest solutions of systems of linear logical equations: theory and applications in logic

design. – 2. Workshop "Boolesche Probleme", 19./20. September 1996, Freiberg/Sachsen, pp. 63-69.
20. Zakrevskij A.D. Randomization of a parallel algorithm for solving undefined systems of linear logical equations. –

Proceedings of the International Workshop on Discrete-Event System Design – DESDes’04. – University of Zielona Gora
Press, Poland, 2004, pp. 97-102.

21. Zakrevskij A.D. Raising efficiency of combinatorial algorithms by randomized parallelization. – XI-th International
Conference “Knowledge-Dialogue-Solution” KDS – 2005, June 20-30, 2005, Varna, Bulgaria, pp. 491-496.

22. Zakrevskij A.D., Vasilkova I.V. Forecasting the run-time of combinatorial algorithms implementation. – Methods of logical
design, 2003, issue 2. Minsk: UIIP of NAS of Belarus, pp. 26-32 (in Russian).

23. Zakrevskij A.D. Solving inconsistent systems of linear logical equations. – 6-th International Workshop on Boolean
Problems, September 23-24, 2004, Freiberg (Sachsen), pp. 183-190.

24. Zakrevskij A.D. A new algorithm to solve overdefined systems of linear logical equations. – Computer-Aided Design of
Discrete Devices (CAD DD’04). Proceedings of the Fifth International Conference, 16-17 November 2004, Minsk, vol. 1,
pp. 154-161.

Authors' Information

Arkadij Zakrevskij - United Institute of Informatics Problems of the NAS of Belarus, Surganov Str. 6, 220012
Minsk, Belarus; e-mail: zakrevskij@tut.by

