
International Journal "Information Theories & Applications" Vol.15 / 2008

279

DIGRAPHS DEFINITION FOR AN ARRAY MAINTENANCE PROBLEM

Angel Herranz, Adriana Toni

Abstract: In this paper we present a data structure which improves the average complexity of the operations of
updating and a certain type of retrieving information on an array. The data structure is devised from a particular
family of digraphs verifying conditions so that they represent solutions for this problem.

Keywords: array maintenance, average complexity, data structures, models of computation

Introduction
Let A be an array of fixed length N with elements belonging to a commutative semigroup an let us consider two
operations, Update and Retrieve, with the following intended effect:
- Update(i, x) increments the i-th element of A in x (A(i):= A(i)+ x;).
- Retrieve(i, j) outputs A(i)+ A(i + 1) +... + A(j).
The less space consuming and, likely, the most natural data structure for implementing both operations is the
array itself (from now on, expression i..j denotes the set {k ∈ Ν • i ≤ k ∧ k ≤ j }):

Example 1
Update(i,x):
begin
 A(i) := A(i) + x;
end;

Retrieve(i,j):
begin
 return ∑ ∈ jik

iA
..

)(

end;

Running in a random access memory machine, the complexity of Update(i, x) is constant whilst, in the worst
case, the complexity of Retrieve(i, j) is linear on N. To improve the complexity of Retrieve the data structure can
be reified as an array S of length N + 1 with the property ∑ ∈

=
Nk

iAiS
..1

)()(. Then programs must be
adapted:

Example 2
Update(i,x):
for k in i..N loop
 S(k) := S(k) + x;
end loop;

Retrieve(i,j):
begin
 return S(i)-S(j+1);
end;

For this implementation the complexity of Retrieve is constant whereas, in the worst case, the complexity of
Update is linear on N. The design in Example 2 assumes the existence of - (the inverse of +) in the model. This
consideration aside, under any execution sequence of operations Update and Retrieve, both implementations are
indistinguishable from a functional point of view. This means that Example 1 and Example 2 are different
solutions to the same problem definition.
In this paper we are interested in designs with a good average complexity of Update and Retrieve operations
when the program variables store elements of a commutative semigroup. Obviously, programs must yield the
correct result irrespective of the particular semigroup. Uniform probability of Update and Retrieve execution in
programs is assumed in order to improve what we have called average complexity, in other words, we are trying
to minimise the sumof the costs of all executions.
In the next Section the RQP (Range Query Problem) and its solutions in terms of digraphs are formalised. Then a
particular family of digraphs that represent solutions to the RQP will be presented in an informal way.

International Journal "Information Theories & Applications" Vol.15 / 2008

280

Range query Problem
In this section, the range query problem and its solutions are formalized. In this formalization, arrays store
elements that belong to a commutative semigroup S. Let us start with the definition of arrays used in this paper.
Definition 1. An array A of length N is a total function from 1..N into S.
Criterion 2. Let A be an array of length N interpreted as a function from 1..N into S: A. 1..N. S. |A| denotes N,
dom A denotes 1..N and ran A denotes S.
Definition 3. The Range Query Problem of size N (N-RQP) is the analysis and design of data structures for the
implementation of the operations Update and Retrieve where both operations are interpreted as higher order
functions:

Definition 4. A N-RQP design is a triple (Z, U, R) where Z is an array of length M with N less or equal M, U is a
family of subsets of 1..M indexed on 1..N and R is a family of subsets of 1..M indexed on 1..N × 1..N. Given a N-
RQP design (Z, U, R), the implementation of the operations Update and Retrieve is:

Lemma 5. The complexity of the implementation of Update(i, x) and Retrieve(i, j) in Definition 4 is linear on the
cardinal of Ui and Rij, respectively, when running on a random access memory machine.
PROOF. Trivial
Definition 6. A N-RQP design (Z, U, R) is a N-RQP solution if and only if for every , ,i j k N∈ and ,x y S∈
the following triplets in the programming logic (annotated programs) are totally correct:

Lemma 7. A N-RQP design (Z, U, R) is a N-RQP solution if and only if

PROOF. This is a well known result and a proof can be found in [1].

International Journal "Information Theories & Applications" Vol.15 / 2008

281

Average Complexity in RQP Solutions
As we mentioned in previous sections, we will try to minimize the sum of the costs of all different executions of
Update and Retrieve. A uniform probability distribution for each Update possible execution (N operations) and

Retrieve possible execution (1
2

N +⎛ ⎞
⎜ ⎟
⎝ ⎠

operations) is assumed.

Definition 8. The average complexity of a N-RQP design (Z, U, R) is

Minimizing function φ below, is enough to minimize the average complexity function above.

RQP Solutions as Graphs
N-RQP designs can be described in terms of graphs where the content of Rij and Ui are represented as graph
vertices and edges (Definition 14). Let us start with some basic definitions.
Definition 9. A digraph, or directed graph, G is a pair (V, E), where V is a finite set (vertex set) and E is a binary
relation on V (edge set).
Criterion 10. Notation u v→ , instead of (u, v), is used to denote the edges
Definition 11. Let G =(V, E) be a digraph, the out-degree of a vertex u is { | }v V u v E∈ → ∈ and the in-

degree of a vertex v is { | }u V u v E∈ → ∈ .

Definition 12. If there is a path from v1 to v2 in a digraph G =(V, E) we say that v2 is reachable from v1.
Functions Successors and Ancestors are defined as:

(,) { | is reachable from } Successors G u v V v u= ∈
(,) { | is reachable from } Ancestors G v u V v u= ∈

*(,) { } (,)Successors G u u Successors G u= ∪
*(,) { } (,)Ancestors G v v Ancestors G v= ∪

Definition 13. An acyclic digraph G =(V, E) is a N-RQP graph if the following conditions hold:

Definition 14. Given a N-RQP graph G =(V, E), the N-RQP design (Z, U, R) is a N-RQP design in terms of G if it
verifies the following properties:

The existence of Rij is guaranteed for every i, j such that Nji ≤≤≤1 because in the absence of a set Rij with
a cardinal less than j. i +1 we would end up with Rij = i..j. With respect to the uniqueness of Rij several sets could

International Journal "Information Theories & Applications" Vol.15 / 2008

282

exist with a smallest cardinal verifying the conditions in Definition 16 so an arbitrary criterion should be given
(lexicographic order, for instance).
The following theorem states that N-RQP graphs represent N-RQP solutions:
Theorem 15. Let G =(V, E) be a N-RQP graph, a N-RQP design in terms of G is a N-RQP solution.
PROOF. Let us consider the execution of an arbitrary program:

r := Retrieve(i,j);
Update(k,x);
r' := Retrieve(i,j);

with , 1..i k N∈ and ..2j i N∈ . We have to prove that if i k j≤ ≤ then 'r r x= + ; otherwise 'r r= . The
proof is based on the following obvious fact: ' k ijr r U R x= + ∩ (observe that Retrieve(i, j) is Z(u1)+ ... +

Z(un) where Rij = {u1,...,un}).
• Case k < i ∨ j < k: in this case Uk ∩ Rij = ∅ therefore r' = r.
• Case i ≤ k ≤ j: in this case |Uk ∩ Rij | = 1 therefore r' = r + x.

K=0 K=1 K=2

Fig. 1. 2K-RQP graphs for K ∈ 0..2

Constructing RQP Solutions
The inspiration of our approach comes from a particular family of N-RQP graphs where N is a power of 2. In the
solution designs in terms of graphs of this kind, the cost of Retrieve operations is less or equal to 2.
Graphs of this family are called 2k- RQP graphs, with K ∈ Ν. The construction method is described by induction
on K and Figure 1 presents the trivial examples for K=0,1,2.
The reader will observe that, strictly speaking, graphs presented in this section are not N-RQP graphs because
their vertices are not positive integers but pairs (i, j) of positive integers where ()i j j N≤ ∧ ≤ . This is not an
important problem, as pairs can be trivially encoded as positive integers 1 and an isomorphic N-RQP graph would
be obtained. Authors pursue elegance in the presentation so vertices as pairs (i, j) are maintained.
The main characteristic of the construction of N-RQP solutions is that our graphs have the following property:

1 2ij ijR R≤ ∧ ≤

Intuitively, the 2K+1-RQP graph can be built by cloning twice the 2K-RQP graph and then adding new vertices and
edges that maintain the above mentioned property. To achieve this aim, after cloning the 2K-RQP graph, new
vertices and edges will be added taking into account that the property on Rij holds if j 2K or i> 2K.

Let us show an example; the 8-RQP graph in Figure 2 is the result of cloning the 22-RQP graph in Figure 1. In the
8-RQP design (Z, U, R) in terms of that graph, the values of all Ui and those Rij such that |Rij| > 2 are:

U1 = {(1, 1), (1, 2)} U2 = {(2, 2), (1, 2)} U3 = {(3, 3), (3, 4)} U4 = {(4, 4), (3, 4)}
U5 = {(5, 5), (5, 6)} U6 = {(6, 6), (5, 6)} U7 = {(7, 7), (7, 8)} U8 = {(8, 8), (7, 8)}

R15 = {(1, 2), (3, 4), (5, 5)} R16 = {(1, 2), (3, 4), (5, 6)}
R17 = {(1, 2), (3, 4), (5, 6), (7, 7)} R18 = {(1, 2), (3, 4), (5, 6), (7, 8)}
R25 = {(2, 2), (3, 4), (5, 5)} R26 = {(2, 2), (3, 4), (5, 6)}
R27 = {(2, 2), (3, 4), (5, 6), (7, 7)} R28 = {(2, 2), (3, 4), (5, 6), (7, 8)}
R37 = {(3, 4), (5, 6), (7, 7)} R38 = {(3, 4), (5, 6), (7, 8)}

International Journal "Information Theories & Applications" Vol.15 / 2008

283

R47 = {(4, 4), (5, 6), (7, 7)} R48 = {(4, 4), (5, 6), (7, 8)}

The idea is that new vertices and edges have to be added in order to decrease the cardinal of Ri4 and R5j to 1.
Rij is then obtained as the union of Ri4 and R5j with a resulting cardinal of 2. In the example |R14|=|R24|=2 so a pair
of vertices are added representing R14=R12∪R34 and R24=R22∪R34. Reasoning symmetrically with R57 and R58 we
get the 23-RQP graph in Figure 3. The application of the idea is shown in the left half of the 16-RQP graph (after
clowning the 23-RQP) in Figure 4.

Fig. 2. A 8-RQP graph resulting after cloning the 22-RQP graph

Fig. 3. The 23-RQP graph

Fig. 4. Left half of the 24-RQP graph

Next we present now the formalization of 2k-RQP graphs.
Definition 16
Let K be a natural number. A 2K -RQP graph GK is defined inductively:

)0)},1,1({0)1(== KGthenKif
)(0)2(1−=> KK GDuplicateGthenKif

where function Duplicate is defined as

function Duplicate (GK = (VK,EK) : Digraph) return Digraph is
 N : constant := 2K
 M : constant := |VK|
 V : {(i, j) ∈ 1..N × 1..N • i ≤ j} := ∅;
 E : P(V×V) := 0;
 i, j : 1..(2N);
begin

International Journal "Information Theories & Applications" Vol.15 / 2008

284

 -- The ‘‘cloning’’ loops
 for (i, j) in VK loop
 V := V ∪{(i, j), (i + N, j + N)};
 end loop;
 for (i, j) → (i', j') in EK loop
 E := E ∪ {(i, j) → (i', j'), (i + N, j + N) → (i' + N, j' + N)};
 end loop;
 -- (V,E) is a graph with two subgraphs which are just like G
 -- but with different node numbering

 for i in 1..(N − 1) loop -- The ‘‘left half’’ loop
 j := i + 1;
 while (i,N) ∉ V ∧ j ≤ N loop
 if (i, j) ∈ V ∧ (j, N) ∈ V then
 V := V ∪ {(i, N)};
 E := E ∪ {(i, N) → (i, j), (i,N) → (j,N)};
 else
 j := j + 1;
 end if;
 end loop;
 end loop;

 for j in (N + 2)..(2N) loop -- The ‘‘left half’’ loop
 i := j − 1;
 while (N + 1, j) ∉ V ∧ i ≤ 2N loop
 if (N, i) ∈ V ∧ (i, j) ∈ V then
 V := V ∪ {(N, j)};
 E := E ∪ {(N, j) → (N, i), (N, j) → (i, j)};
 else
 i := i + 1;
 end if;
 end loop;
 end loop;
 return (V,E);
end Duplicate;

Bibliography
[1] D.J. Volper, M.L. Fredman, Query Time Versus Redundancy Trade-offs for Range Queries, Journal of Computer and

System Sciences 23, (1981) pp.355--365.
[2] W.A. Burkhard, M.L. Fredman, D.J.Kleitman, Inherent complexity trade-offs for range query problems, Theoretical

Computer science, North Holland Publishing Company 16, (1981) pp.279--290.
[3] M.L. Fredman, The Complexity of Maintaining an Array and Computing its Partial Sums, J.ACM, Vol.29, No.1 (1982)

pp.250--260.
[4] A. Toni, Lower Bounds on Zero-one Matrices, Linear Algebra and its Applications, 376 (2004) 275--282.
[5] A. Toni, Complejidad y Estructuras de Datos para el problema de los rangos variables, Doctoral Thesis, Facultad de

Informática, Universidad Politécnica de Madrid, 2003.
[6] A. Toni, Matricial Model for the Range Query Problem and Lower Bounds on Complexity, submitted.

Authors' Information
Ángel Herranz Nieva – Assistant Professor; Departamento de Lenguajes y Sistemas Informáticos; Facultad de
Informática; Universidad Politécnica de Madrid; e-mail: aherranz@fi.upm.es
Adriana Toni – Facultad de Informática, Universidad Politécnica de Madrid, Spain; e-mail: atoni@fi.upm.es

