
Natural Language Addressing

17

Introduction

Large unstructured or semi-structured datasets require a high level of computational

sophistication because operations that are easy at a small scale — such as moving data between

machines or in and out of storage, visualizing the data, or displaying results —can all require

substantial algorithmic ingenuity. As a data set becomes increasingly massive, it may be infeasible to

gather it in one place and analyze it as a whole. Thus, there may be a need for algorithms that operate

in a distributed fashion, analyzing subsets of the data and aggregating those results to understand the

complete set. One aspect of this is the challenge of data assimilation, in which we wish to use new

data to update model parameters without reanalyzing the entire data set. This is essential when new

waves of data continue to arrive, or subsets are analyzed in isolation of one another, and one aims to

improve the model and inferences in an adaptive fashion — for example, with streaming algorithms

[NRC, 2013].

The White House Office of Science and Technology Policy (OSTP) — in concert with

several Federal departments and agencies — created the “Big Data Research and Development

Initiative” to:

― Advance state-of-the-art core technologies needed to collect, store, preserve, manage,

analyze, and share huge quantities of data;

― Harness these technologies to accelerate the pace of discovery in science and

engineering, strengthen national security, and transform teaching and learning;

― Expand the workforce needed to develop and use Big Data technologies.

By improving the ability to extract knowledge and insights from large and complex

collections of digital data, the initiative promises to help solve some the Nation’s most pressing

challenges [BIG DATA INITIATIVE, 2012].

For instance, as it is introduced in [Big data, 2012], the USA Department of Defense (DOD)

is “placing a big bet on big data” investing $250 million annually (with $60 million available for new

research projects) across the Military Departments in a series of programs that will:

― Harness and utilize massive data in new ways and bring together sensing, perception and

decision support to make truly autonomous systems that can maneuver and make

decisions on their own;

― Improve situational awareness to help war fighters and analysts and provide increased

support to operations. The Department is seeking a 100-fold increase in the ability of

analysts to extract information from texts in any language, and a similar increase in the

number of objects, activities, and events that an analyst can observe.

Introduction

18

The XDATA program seeks to develop computational techniques and software tools for

analyzing large volumes of data, both semi-structured (e.g., tabular, relational, categorical, meta-data)

and unstructured (e.g., text documents, message traffic). Central challenges to be addressed include:

― Developing scalable algorithms for processing imperfect data in distributed data stores;

― Creating effective human-computer interaction tools for facilitating rapidly customizable

visual reasoning for diverse missions.

The program envisions open source software toolkits for flexible software development that

enable processing of large volumes of data for use in targeted defense applications.

The Cyber-infrastructure for a Billion Electronic Records (CI-BER) of the USA National

Archives & Records Administration (NARA) is a joint agency sponsored testbed notable for its

application of a multi-agency sponsored cyber infrastructure and the National Archives' diverse 87+

million file collection of digital records and information now active at the Renaissance Computing

Institute. This testbed will evaluate technologies and approaches to support sustainable access to ultra-

large data collections.

At the end, in the USA National Science Foundation (NSF), the Information Integration and

Informatics addresses the challenges and scalability problems involved in moving from traditional

scientific research data to very large, heterogeneous data, such as the integration of new data types

models and representations, as well as issues related to data path, information life cycle management,

and new platforms [Big data, 2012].

Worldwide Big Data technology and services are expected to grow. The challenge is to

strengthen Europe’s position as provider of innovative multilingual products and services based on

digital content and data, addressing well identified industry and consumer market needs. Research and

Innovation activities in this challenge will provide professionals and citizens with new tools to model,

analyze, and visualize vast amounts of data from which to extract more value, to make an intelligent

use of data coming from different sources and to create, access, exploit, and re-use all forms of digital

content in any language and with any device [HORIZON 2020, 2013].

In accordance with the actuality of these problems, this work is aimed to solve the problem

of searching in big data structures by proposing a special kind of hashing, so-called “multi-layer

hashing”, i.e. by implementing recursively the same specialized hash function to build and resolve the

collisions in hash tables. In other words, the main idea consists in using the specialized hashing

function in depth till it is needed.

This approach is called “Natural Language Addressing” (NLA) [Ivanova et al, 2012a;

Ivanova et al, 2013a; Ivanova et al, 2013d]. In this work we will concern:

― structured data (dictionaries, thesauruses, ontologies);

― semi-structured data (big RDF triple or quadruple datasets),

and will provide corresponded experiments and experimental practical implementation.

Natural Language Addressing

19

The idea of Natural Language Addressing (NLA)

 Variety and orderliness

The world around us can be described in one word as "Variety". It is difficult to agree that

the world has not so needed orderliness, created over millennia, developed and maintained constantly

as oasises of order in the core of the chaos... It is strange for our perception of the world as a

four-dimensional existence. It is strange, because our mind builds a completely different picture of

ordered spatiality and extensity.

The concept “order” has many meanings but here it is used in the sense of a condition of

logical or comprehensible arrangement among the separate elements of a group [AHD, 2009]; a state

in which all components or elements are arranged logically, comprehensibly, or naturally; sequence

(alphabetical order) [Collins, 2003]; arrangement of thoughts, ideas, temporal events

[WordNet, 2012].

One very important aspect of the order is that every entity of the ordered set has its own

location in it. The names of these locations are called addresses.

The common sense meaning of the concept “address” is such as a description of the location

of a person or organization, as written or printed on mail as directions for delivery [AHD, 2009]; the

conventional form by which the location of a building is described [Collins, 2003]; a sign in front of a

house or business carrying the conventional form by which its location is described; [WordNet, 2012].

We will use the concept “address” in the sense accepted in the Computer Science: the code

that identifies where a piece of information is stored [WordNet, 2012]; a name or number used in

information storage or retrieval that is assigned to a specific memory location; the memory location

identified by this name or number; a name or a sequence of characters that designates an e-mail

account or a specific site on the Internet or other network [AHD, 2009].

It is important to take in account that the memory address may be of two kinds

[Stably, 1970]:

― Physical location in any device (hard disk, main memory, flash memory);

― Logical (relative) location in a file given as an offset from the beginning of the file, i.e.

the position of a byte in the file. In other words, it is the sequential number of the pointed

byte in the file, starting from zero.

In this research we will use concept “memory address” only in the second sense, i.e. as

offset in a file stored somewhere in the computer accessible local or global network environment.

 Name – Address - Route

In January 1978, John F. Shoch from “Xerox Palo Alto Research Center” had written a very

interesting note [Shoch, 1978a]. Later in the same year he had published this note in the paper

[Shoch, 1978b]. This classical paper became as a mile stone in the further research concerning the

naming, addressing and routing at the first place with its “extremely general definition”

[Shoch, 1978a]:

Introduction

20

The “name” of a resource indicates “what” we seek,

an “address” indicates “where” it is, and

a “route” tell us “how to get there”.

This definition gives us a quick and intuitive understanding of the fundamental concepts of

naming. Informally, a name is a string of symbols that identifies an object, thus both a human readable

text-string and a binary number can be a name. Ideally, all objects would be named and handled in a

uniform manner [Jording & Andreasen, 1994].

Shoch gave “some further detail to flesh this out” [Shoch, 1978a]:

I. A “name” is a symbol - usually a human-readable string - identifying some resource, or set

of resources. The name (what we seek) needs to be bound to the address (where it is).

II. An “address”, however, is the data structure whose format can be recognized by all

elements in the domain, and which defines the fundamental addressable object. The address (where

something is) needs to be bound to the route (how to get there).

III. A “route” is the specific information needed to forward a piece of information to its

specified address.

Thus, a “name” may be used to derive an “address”, which may then be used to derive a

“route”.

There is an interesting similarity between this structure and mechanisms used in

programming languages (where one must bind a value to a variable), or in operating systems (where

one must link a particular piece of code into a module) [Shoch, 1978a].

Establishing and supporting the correspondence between logical and physical addresses is

duty of the operating systems or, in general, of all service functions of the local or global networks.

This correspondence is transparent for the end user programs which request the logical address and

operating environment is responsible to locate and access concrete physical location.

Special kind of files are so called “main memory mapped files” which are accessible as files

but during their processing are stored in the main computer memory and only updated their blocks are

written on the external memory devices. Such kind of processing of files is useful for speeding the

work of programs.

The concept “(logical) address” is closely connected with the term “information model”

[Ivanova, 2013].

 Information models

We continuously build information models of the world and of ourselves in this world. The

need of coordinating our actions with others humans or intelligent devices requires constant

information exchange (interaction), the basis of which are the information models.

In the Computer Science, the term “information model” is popular.

Natural Language Addressing

21

“An information model is a representation of concepts, relationships, constraints, rules, and

operations to specify data semantics for a chosen domain of discourse. The advantage of using an

information model is that it can provide sharable, stable, and organized structure of information

requirements for the domain context. An information modeling language is a formal syntax that allows

users to capture data semantics and constraints” [Lee, 1999].

In other words, the modeled objects are information structures and the relations between

them. The “computer information models” concern logical organization of storing the information

and operations with it.

It is wrong to believe that the information models are a phenomenon only of humans. But

only for humans there exist letters and accordingly textual information models (see for instance

[Čech, 2012]).

 Addressing in the textual information models

The simplest textual information model is a linear structure of text elements – letters, words,

sentences or more complicated structures like tags in XML.

Some models have continuous internal structure which may be divided on substructures, etc.

For instance, the Brookshear’s “Overview of the Computer Science” is such model. It is represented

by a book with chapters [Brookshear, 2012]. It is a complex information model because contains non-

textual elements: graphics and pictures.

The nonlinear information models may be represented by graphs of interconnected textual

elements. An example of such model is graphical representation of any ontology. Other examples are

relational structures usually represented by sets of tables.

When the definitions are placed randomly in a book, for the sake of convenience at the end

of book is located an index with main concepts and numbers of the pages where the concepts are

defined. One needs to follow simple algorithm to find a definition. This is illustrated at Figure 1 for

the concept “address, of memory cell”.

The important elements of the textual models may be defined by corresponded definitions

located in different places of the text. If the concepts together with theirs definitions are ordered

alphabetically, like in a dictionary (Figure 2), going through the text one may found the needed

concept and its definition.

In other words, irrespective of the type of the textual information model, every text element

has its own location in the text and, respectively, its own relative address in the text document (page,

paragraph, number of word, etc.) or file (relative offset from the first position in the file). Some of the

elements may be so important to be pointed by their relative positions in an index.

Index is a sequential arrangement of material, especially in alphabetical or numerical order,

which serves to guide, point out or otherwise facilitate reference, especially: a more or less detailed

alphabetized list of names, places, subjects, etc, treated in the text of a printed work. It usually appears

at the end of the book and identifies page numbers on which information about each subject appears

[AHD, 2009; Collins, 2003].

Introduction

22

Figure 1. Addressing by indexing [Brookshear, 2012]

Sets of concepts and their definitions, organized in dictionaries, are ordered alphabetically

and this way location of every concept may be found easily.

Natural Language Addressing

23

Figure 2. Addressing by natural language order [Auge, 1909]

 Computer indexes

The text information models may be stored as files in the (internal or external) computer

memory. Locating the concepts and definitions may be done by:

 Direct scanning the files;

 Indexing and based on it search of the pointer to the address (number of the first byte) of

the text element (record in the file).

Scanning the files is convenient only for small volumes of concepts and definitions. Some

rationalization is possible using some algorithms like binary search.

Indexing is creating tables (indexes) that point to the location of folders, files and records.

Depending on the purpose, indexing identifies the location of resources based on file names, key data

fields in a database record, text within a file or unique attributes in a graphics or video file

[PC mag, 2013].

In database design, an index is a list or a reference table of keys (or keywords), each of

which identifies a unique record or document and is used to locate a particular element within a data

array or table. Indices make it faster to find specific records and to sort records by the index field - that

is, the field used to identify each record [Webopedia, 2013; AHD, 2009; Collins, 2003].

For large volumes of concepts, the indexes became too large and additional, secondary

indexing is needed. Such multi-level index structures are well-known B-trees of Rudolf Bayer

[Bayer, 1971] as well as B+ trees [Knuth, 1997] (Figure 3).

Introduction

24

6 128 15 3218 35 5040 51 5852 60 7062 71 8072 83 8985 91 9492 96 9998

12 32 58

50 82

70 89 94

set of records

Figure 3. B-tree

Let repeat, the main idea of indexing is to facilitate the search by search in the (multi-level)

index and after that to ensure the direct access to the address given by the pointer. The address is

relative offset of the first byte of the record from the beginning (first byte) of the file. The value of the

offset is just what the pointer consists.

In other words, the goal of data indexing is to ease the search of and access to data at any

given time. This is done by creating a data structure called index and providing faster access to the

data. Accessing data is determined by the physical storage device being used. Indexing could

potentially provide large increases in performance for large-scale analysis of unstructured data.

Additionally the implementation of the chosen index must be suitable in terms of index construction

time and storage utilization [Faye et al, 2012].

Indexing needs resources: memory for storing additional information and time for

processing, which may be quite a long, especially for updating of the indexes when new elements are

added or some old ones are removed.

 Naming the addresses

Basic element of an index is couple: (name, address).

For instance such couples on Figure 1 are:

(“Address, of memory cell”, 27) (“Address polynomial”, 350)

In different sources the “name” is called “key”, “concept”, etc. The address usually is given

by any “number”, “pointer”, “offset”, “location”, etc.

There are two interpretations of the couple (concept, address):

1) The address is a connection of the concept with its definition in the text, i.e. practically we

have triple: (name, address, definition).

2) The concept is a name of a computer main memory address and may be used for user

friendly style of programming and the third part (value) may be variable, i.e. practically we have

triple: (name, address, value).

In the very beginning, replacing the address by name was used in the programming

languages for pointing the addresses by names of identificators, like in Algol 60 [Naur, 1963]. (In this

case, the address is real memory location but not offset in a file in the memory. We will not discuss all

kinds of addressing in the computer memory used in processor’s registers. In this text, the address is

Natural Language Addressing

25

relative offset from the first byte of a file, sometimes given together with information for file location

(path to the) file.)

Later, the same idea was used in the Web navigation systems. Web navigation is mostly

based on Uniform Resource Locators (URLs). URLs can be hard to remember and change constantly.

For instance, in the International Human-Friendly Web Navigation System, the RealNames' Internet

Keywords offer an alternative Web addressing scheme using natural language, replacing unfriendly

URLs like http://www.fordvehicles.com/vehiclehome.asp?vid=12 with common names such as "Ford

Mustang". Building a fully international system that provides a human-friendly naming infrastructure

for the whole Web is a challenging task. By leveraging Unicode to represent names it is possible to

build a global naming engine that, coupled with knowledge of local customs simplifies Web

navigation through the use of natural language keywords [Arrouse, 1999].

Some of the electronic spreadsheets have possibility to point a group of cells and/or rows

with any name and further to use this name in functions and other operations assuming all cells and/or

rows named by this name [Zoho sheet, 2012] (Figure 4).

Figure 4. Natural Language Addressing in a spreadsheet

For instance, Zoho Sheet can recognize and correlate names used in formulas with cells/cell

ranges automatically. You have to just give the row/column header of a table as arguments to

functions and Zoho Sheet will auto-recognize the cell range associated with the name. It is very

convenient to quickly type in the formulas with these names instead of worrying about keying in the

proper cell range.

Consider the sheet on Figure 4, available at http://zohosheet.com/public.do?fid=25835.

Look at the formulas in the cells F5:F7 and C9:E9. The formula =SUM (USA) will

automatically add the cell values in the row with the header ‘USA’. Earlier you had to use =SUM

(C5:E5). Now the row header can directly be used. You do not even need to name/label the cell

ranges. You can even copy and paste these formulas to adjacent rows or columns and they will

automatically be adjusted relatively. In this case, copying the F5 cell and pasting it to F6, will result in

the formula =SUM (EMEA) in F6. (Here the concept “address” is used as cell co-ordinates in the table

Introduction

26

(C5, C9, E5, F6, etc.) but not as offset in a file.)

The approach of replacing cell addresses with names in Zoho Sheet was called “Natural

Language Addressing”.

 Using encoding of the name both as address and as route

In this research we follow a proposition of Krassimir Markov to use the computer encoding

of name (concept) letters as logical address of connected to it information. This way no indexes are

needed and high speed direct access to the text elements is available. It is similar to the natural order

addressing in a dictionary shown at Figure 2 where no explicit index is used but the concept by itself

locates the definition. Our approach is similar to one in the Zoho Sheet, too.

Because of this we will use the same term: “Natural Language Addressing”.

Shoch's definition [Shoch, 1978a] failed to capture that addresses are names too and names

must eventually be mapped to routes [Jording & Andreasen, 1994]. In this sense, the idea of Natural

Language Addressing (NLA) is to use encoding of the name both as relative address and as route in a

multi-dimensional information space and this way to speed the access to stored information.

For instance, let have the next definition:

“London: The capital city of England and the United Kingdom, and the largest city, urban

zone and metropolitan area in the United Kingdom, and the European Union by most measures”.

In the computer memory, for example, it may be stored in a file at relative address

“00084920” and the index couple is: (“London”, “00084920”)

At the memory address “00084920” the main text, “The capital … measures.” will be stored.

To read/write the main text, firstly we need to find name “London” in the index and after that

to access memory address “00084920” to read/write the definition.

If we assume that name “London” in the computer memory is encoded by six numbers (letter

codes), for instance by using ASCII encoding system London is encoded as (76, 111, 110, 100, 111,

110), than we may use these codes for direct address to memory, i.e.

(“London”, “76, 111, 110, 100, 111, 110”)

Above we have written two times the same name and this is truth. Because of this we may

omit this couple and index, and read/write directly to the address “76, 111, 110, 100, 111, 110”.

For human this address will be shown as “London”, but for the computer it will be “76, 111,

110, 100, 111, 110”.

Now, what we need is a tool for storing and accessing information using Natural Language

Addressing. At first glance, such tool may be the hash tables.

 Hashing and natural language addressing

The array “76, 111, 110, 100, 111, 110” may be assumed as an offset, i.e. as number

“076111110100111110”. This causes two main problems:

- We need a hypothetic file with unlimited length;

- The offset points to only one byte but the definition is 170 bytes long and will occupy the

next addresses.

Natural Language Addressing

27

A possible solution is using hash tables.

Hash tables are used in a wide variety of applications. In networking systems, they are used

for a number of purposes, including: load balancing, intrusion detection, TCP/IP state management,

and IP address lookups. Hash tables are often attractive since sparse tables result in constant-time,

O(1), query, insert and delete operations. However, as the table occupancy, or load, increases,

collisions will occur which in turn places greater pressure on the collision resolution policy and often

dramatically increases the cost of the primitive operations. In fact, as the load increases, the average

query time increases steadily and very large worst case query times become more likely [Kumar &

Crowley, 2005].

This means that we could not use encoding of names as keys for hash tables or direct offsets.

We need a special organization of file internal structure and function that will transform the name in a

unique location in the file where the definition will be stored without collisions with other texts.

This problem is already solved at the level of file system – every file has its own name and

file system converts it (using file allocation table – FAT) in an address of the file’s first block on the

hard disk. This is convenient for information which is relatively long – whole documents, images,

music files, etc. because every file occupies at least one cluster (2KB, 4KB or more hard disk space).

We have to extend this idea to be used into the file. For this purpose we have to establish special kind

of file internal organization with additional specialized indexing.

The idea presented in this work differs from the hashing by two characteristics:

 The function which juxtapose the letters to integer numbers is one-one mapping and this

way no collisions exist;

 This mapping (hash function) may be used recursively for every symbol of a string to

build hierarchical multi-layer set of hash tables and this way to speed the access to

information.

For instance, the array “76, 111, 110, 100, 111, 110” may be assumed as a route to (co-

ordinates of) a point in a multi-dimensional (in this case: six-dimensional) information space and the

definition may be stored in this point.

In other words, our function may be used recursively for every symbol and this way we will

create hierarchical multi-layer set of tables. For the case of word “London” we will have six layers.

The natural language does not contain words only of six letters long. The length of the words

is variable and in addition there exist names as phrases like “Address polynomial” above. The set of

all natural words and phrases defines a multi-dimensional logical address space with variable

dimensions and unlimited size.

What we need are:

 A special algorithm which converts such multi-dimensional addresses in concrete routes

to linear (relative) locations in the files (on the hard disk, for example);

 A program tool which will realize this algorithm.

A solution of this problem is presented in this monograph.

Introduction

28

Brief overview of the content

Chapter 1. Firstly in this chapter, we will remember the needed basic mathematical

concepts. Special attention will be paid to the Names Sets – mathematical structure which is used

further for building models needed for our research. We will use strong hierarchies of named sets to

create a specialized mathematical model for new kind of organization of information bases called

“Multi-Domain Information Model” (MDIM). The “information spaces” defined in the model are

kind of strong hierarchies of enumerations (named sets).

At the end, we will remember the main features of hashing and types of hash tables as well

as the idea of “Dynamic perfect hashing” and “Trie”, especially – the “Burst trie”. Hash tables and

tries give very good starting point. The main problem is that they are designed as structures in the

main memory which has limited size, especially in small desktop and laptop computers.

Chapter 2 presents state of the art in the storing models.

This chapter is aimed to introduce the main data structures and storing technologies which

we will use to compare our results. Mainly they are graph data models as well as Resource

Description Framework (RDF) storage and retrieval technologies.

Firstly we shortly define concepts of storage model and data model.

Mapping of the data models to storage models is based on program tools called “access

methods”. Their main characteristics will be outlined.

During the eighties of the last century, the total growing of the research and developments in

the computers’ field, especially in image processing, data mining and mobile support cause impetuous

progress of establishing convenient "spatial information structures" and "spatial-temporal

information structures" and corresponding access methods. Important cases of spatial representation

of information are Graph models. Because of this, Graph models and databases will be discussed

more deeply and examples of different graph database models will be presented. The need to manage

information with graph-like nature especially in RDF-databases has reestablished the relevance of

this area.

In accordance with this, the analyses of RDF databases as well as of the storage and

retrieval technologies for RDF structures will be in the center of our attention. Storing models for

several popular ontologies and summary of main types of storing models for ontologies and, in

particular, RDF data, will be discussed.

Our attention will be paid to addressing and naming (labeling) in graphs with regards to

introducing the Natural Language Addressing (NL-addressing) in graphs. A sample graph will be

analyzed to find its proper representation.

Taking in account the interrelations between nodes and edges, we will see that a

“multi-layer” representation is possible and the identifiers of nodes and edges can be avoided. As

result of the analysis of the example, the advantages and disadvantages of the multi-layer

representation of graphs will be outlined.

Natural Language Addressing

29

For practical implementation of NLA we need a proper model for database organization and

corresponded specialized tools. To achieve such possibilities, we will use “Multi-Domain Information

Model” (MDIM) and corresponded to it software tools to realize dynamic perfect hashing and burst

tries as external memory structures.

Chapter 3 introduces an Access method based on NL-addressing.

This chapter is aimed to introduce a new access method based on the idea of NL-addressing.

For practical implementation of NLA we need a proper model for database organization and

corresponded specialized tools. Hash tables and tries give very good starting point. The main problem

is that they are designed as structures in the main memory which has limited size, especially in small

desktop and laptop computers. Because of this we need analogous disk oriented database

organization.

To achieve such possibilities, we decided to use “Multi-Domain Information Model”

(MDIM) and corresponded to it software tools. MDIM and its realizations are not ready to support

NL-addressing. We will upgrade them for ensuring the features of NL-addressing via new access

method called NL-ArM.

The program realization of NL-ArM, based on specialized hash functions and two main

functions for supporting the NL-addressing, access will be outlined. In addition, several operations

aimed to serve the work with thesauruses and ontologies as well as work with graphs, will be

presented.

Chapter 4 is aimed to outline two basic experiments.

In this chapter we will present two types “clear” experiments: with a text file and a

relational database. The reason is that they are wide used for storing of semi-structured data.

Chapter 5 contains description of experiments for NL-storing of small datasets.

In this chapter we will present several experiments aimed to show the possibilities of

NL-addressing to be used for NL-storing of small size datasets which contain up to one hundred

thousands of instances.

The goal of the experiments with different small datasets, like dictionary, thesaurus or

ontology, is to discover regularities in the NL-addressing realization. More concretely, two

regularities of time for storing by using NL-addressing will be examined:

― It depends on number of elements in the instances;

― It not depends on number of instances in datasets.

This chapter starts with introduction of the idea of knowledge representation. Further in the

chapter three experiments with small size datasets are outlined: for NL-storing of dictionaries,

thesauruses, and ontologies. Presentation of every experiment starts with introductory part aimed to

give working definition and to outline state of the art in storing concrete structures.

Introduction

30

We start with analyzing the easiest one: NL-storing dictionaries. After that, NL-storing of

thesauruses will be analyzed. An experiment with WordNet thesaurus and program WordArM based

on NL-addressing will be discussed.

At the end, a special attention will be given to NL-storing ontologies. This part of the chapter

begins with introducing the basic ontological structures as well as the corresponded operations and

tools for operating with ontologies. Further, NL-storing models for ontologies will be discussed and

experiments with OntoArM program for storing ontologies based on NL-addressing will be outlined.

Chapter 6 grounds on analyzing experiments for NL-storing middle-size and large

RDF-datasets.

In this chapter we will present results from series of experiments which are needed to

estimate the storing time of NL-addressing for middle-size and large RDF-datasets.

The experiments for NL-storing of middle-size and large RDF-datasets are aimed to estimate

possible further development of NL-ArM. We assume that its “software growth” will be done in the

same grade as one of the known systems like Virtuoso, Jena, and Sesame. We will analyze what will be

the place of NL-ArM in this environment. Our hypothesis is that NL-addressing will have good

performance.

Chapter will start with describing the experimental storing models and algorithm used in

this research. Further an estimation of experimental systems will be provided to make different

configurations comparable. Special proportionality constants for hardware and software will be

proposed. Using proportionality constants, experiments with middle-size and large datasets became

comparable.

Experiments will be provided with both real and artificial datasets. Experimental results will

be systematized in corresponded tables. For easy reading visualization by histograms will be given.

Chapter 7 contains analysis of experiments.

In this chapter we will analyze experiments presented in previous chapters 4, 5, and 6, which

contain respectively results from (1) basic experiments; (2) experiments with structured datasets; (3)

experiments with semi-structured datasets. Special attention will be paid to analyzing of storing times

of NL-ArM access method and its possibilities for multi-processing.

In Chapter 8 practical aspects will be discussed.

Some practical aspects of implementation and using of NL-addressing will be discussed in

this chapter.

NL-addressing is approach for building a kind of so called “post-relational databases”. In

accordance with this the transition to non-relational data models will be outlined.

The implementation has to be done following corresponded methodologies for building and

using of ontologies. Such known methodology will be discussed in the chapter. It is called

“METHONTOLOGY” and guides in how to carry out the whole ontology development through the

specification, the conceptualization, the formalization, the implementation and the maintenance of the

ontology.

Natural Language Addressing

31

Special case is creating of ontologies of text documents which are based on domain

ontologies. It consists of Document annotation and Ontology population which we will illustrate

following the OntoPop platform [Amardeilh, 2006].

The software realized in this research was practically tested as a part of an instrumental

system for automated construction of ontologies "ICON" (“Instrumental Complex for Ontology

designatioN”) which is under development in the Institute of Cybernetics “V.M.Glushkov” of NAS of

Ukraine.

In this chapter we briefly will present ICON and its structure. Attention will be paid to the

storing of internal information resources of ICON realized on the base of NL-addressing and

experimental programs WordArM and OntoArM.

Conclusion contains a short presentation of the next steps. Special attention is done on the

area of so called “Big Data” and possible implementation of NLA for processing of large

semi-structured data sets. A brief outline of the main achievements of this work is given.

Appendix A outlines the program realizations of tools for storing information using

NL-addressing: WordArM, OntoArM, and RDFArM for storing thesauruses, small ontologies, and

large RDF triple datasets. Some illustrative tables and figures from experiments as well as other

supporting information are given.

Appendix B contains short information about tools analyzed in the monograph. Main

attention will be paid to Protégé 4.2 and SPARQL. Storage characteristics of analyzed RDF triple

stores will be presented shortly in two groups: (1) DBMS based approaches, (2) Multiple indexing

frameworks.

The monograph was written by:

- Krassimir Markov: Introduction, Ch. 2, 4. 7, Coclusion, and Appendix B2-B3 (125 pp.);

- Krassimira Ivanova: Ch. 1, 3, 5, 6, 8.1-8.3, and Appendix A1-A5 (153 pp.);

- Vitalii Velychko: Chapter 8.4, Appendix A6 - A8, and Appendix B1 (27 pp.)

- Koen Vanhoof and Juan Castellanos: consulting and editing.

