
Conclusion

222

Conclusion

The main goal of this research was to study a new approach for storing semi-structured

datasets. To achieve this goal, we have studied and analyzed the existing methods and systems for

storing semi-structured datasets and we have proposed an information model for storing

semi-structured datasets and corresponded access method as well as tools for working in such style,

theirs main principles, and storing functions.

We have provided experiments and practical approbation of the proposed model and tools by

experimental software realizations and comparative evaluating in order to study their behavior under

practical conditions and to compare with other tools from the same class. The main conclusion is

optimistic. The future realization of NL-addressing, for instance – for cluster machines and

corresponded operation systems, is well-founded.

Our further research will be directed to several interesting areas of implementing
the NL-addressing in business applications where flexibility of this approach will give some new
possibilities. Implementing the NL-addressing in linguistic systems which work with large linguistic
data sets is another direction for further work.

Let point the area of cognitive modeling, too. It is clear; the human brain does not create
indexes. The information processing in the brain looks like our model for NL-addressing. It is very
interesting to provide research in this area.

Big Data

Maybe the most interesting is the area of so called “Big Data”. The term Big Data applies to

information that can’t be processed or analyzed using traditional processes or tools. Increasingly,

organizations today are facing more and more “Big Data challenges”. They have access to a wealth of

information, but they don’t know how to get value out of it because it is sitting in its most raw form or

in a semi-structured or unstructured format [Zikopoulos et al, 2012].

Popular approach for representing Big Data is Resource Definition Framework (RDF). Let

remember, RDF is a graph based data format which is schema-less, thus unstructured, and self-

describing, meaning that graph labels within the graph describe the data itself. The prevalence of RDF

data is due to variety of underlying graph based models, i.e. almost any type of data can be expressed

in this format including relational and XML data [Faye et al, 2012].

Big Data created the need for a new class of capabilities to augment the way things are done

today to provide better line of site and controls over our existing knowledge domains and the ability to

act on them.

Natural Language Addressing

223

BigArM

In the Big Data community, the “MapReduce Paradigm” has been seen as one of the key

enabling approaches for meeting the continuously increasing demands on computing resources

imposed by massive data sets. MapReduce is a highly scalable programming paradigm capable of

processing massive volumes of data by means of parallel execution on a large number of commodity

computing nodes. It was recently popularized by Google [Dean & Ghemawat, 2008], but today the

MapReduce paradigm has been implemented in many open source projects, the most prominent being

the Apache Hadoop [Hadoop, 2014]. The popularity of MapReduce can be accredited to its high

scalability, fault-tolerance, simplicity and independence from the programming language or the data

storage system.

At the same time, MapReduce faces a number of obstacles when dealing with Big Data

including the lack of a high-level language such as SQL, challenges in implementing iterative

algorithms, support for iterative ad-hoc data exploration, and stream processing

[Grolinger et al, 2014].

A possible solution may be the approach of Natural Language Addressing (NLA) presented

in this monograph. It is suitable for storing Big Data. Its main idea is to use internal encoding of letters

of a word or phrase as elements of co-ordinate vector which may be used as hyper-space address of the

information connected to this word or phrase. As result the standard indexing and recompilation of

information base are avoided.

Three main characteristics define Big Data: Volume, Variety, and Velocity [Zikopoulos et

al, 2012]. These characteristics cause corresponded problems of storing Big Data which may be solved

by means of NLA [Markov et al, 2014]:

― Volume (the sheer volume of data being stored today is exploding) – avoiding additional

indexing, duplication of keywords, and corresponded pointers, leads to reducing

additional memory needed for accessing information i.e. we may use addressing but not

classical search engines;

― Velocity (a conventional understanding of velocity typically considers how quickly the

data is arriving and stored, and its associated rates of retrieval) – avoiding recompilation

of information base permits high speed of storing and immediately readiness of

information to be accessed. This is very important possibility for stream data;

― Variety (it represents all types of data — a fundamental shift in analysis requirements

from traditional structured data to include raw, semi-structured, and unstructured data as

part of the decision-making and insight process) – natural language addressing permits

creating a special kind of graph information bases which may operate both with

structured as well as semi-structured information.

What is needed is to extend possibilities of ArM32 up to 64 bit addressing capabilities and to

rationalize the internal hash structures to speed access from milliseconds down to microseconds per

one access operation. This will be done in ongoing developing of its new version called “BigArM” for

64 bit machines and operating systems like MS Windows and Linux as well as for Cloud processing.

Conclusion

224

Collect/Report Paradigm

Realizing BigArM will permit new kind of Cloud processing of Big Data, called

“Collect/Report Paradigm” (CRP). Its idea is very simple and because of this it is perspective to be

realized.

CRP is based on the possibility of NLA to separate incoming information coded as RDF-

triples on many different layers stored in separate archives which may be distributed all over the

world. The correspondence between archives is strongly kept by names as addresses which are equal

for all layers.

Similar model we may see in the game of chance “Bingo” (Figure 84) for two or more

players, who mark off numbers on a grid with unique sequence of numbers printed on their individual

cards as they are announced by the Caller corresponding to numbered balls drawn at random; the game

is won by the first person to call out "bingo!" or "house!" after crossing off all numbers on the grid or

in one line of the grid [YourDictionary, 2013].

Figure 84. Illustration of Collect/Report Paradigm via example of Bingo game

Natural Language Addressing

225

To play Bingo one has to “collect” (to buy) one or more individual cards and after starting

the game to listen what number the Caller will announce, to find in the individual cards the same

numbers and to mark them (i.e. to process the stream of incoming data). After marking every new

number, (in real time, before next number will be announced) player has to analyze the configuration

of marked cells on the individual cards and to decide if it is the winner configuration. If the

configuration is a winner one, the player has to “report” (to call out) “Bingo”. Only the players with

winner configurations have to report, the others must stay silent.

In Collect/Report Paradigm, all nodes have to “listen” in parallel the incoming stream of

RDF-data and to “collect” (to store) information only in the layers the nodes have to support. In the

same time, nodes have to “listen” incoming stream of requests and only nodes, which have

information corresponded to given request has to “report” (to send answer).

As an example let’s remember a part from Table 32 (Table 69). Let it represents six nodes

numbered from 1 to 6 which may be distributed over the net. Incoming information is in RDF triples

(subject, relation, object). Information (objects) for the same subject and relation is concatenated in the

corresponded points. Let assume that Table 69 represents the state of nodes at given time moment. If

in this moment a request for word “cut” will come, only nodes 1 and 6 will “report” the content

(definitions) from corresponded cells. Node 1 will report only the first row which correspond to “cut”

with small letters but not its second row which corresponds to word “CUT” with capital letters. Nodes

2, 3, 4, and 5 will rest silent.

Table 69. A part from Table 32

node layer NLA definition

1 adj_all

cut

{ cut, shortened, (with parts removed; "the drastically cut film") }

{ cut, thinned, weakened, (mixed with water; "sold cut whiskey"; "a cup of

thinned soup") }

{ cut, slashed, ((used of rates or prices) reduced usually sharply; "the slashed

prices attracted buyers") }

{ cut, emasculated, gelded, ((of a male animal) having the testicles removed;

"a cut horse") }

CUT

{ [CUT1, UNCUT1,!] (separated into parts or laid open or penetrated with a

sharp edge or instrument; "the cut surface was mottled"; "cut tobacco";

"blood from his cut forehead"; "bandages on her cut wrists") }

{ [CUT2, UNCUT2,!] ((of pages of a book) having the folds of the leaves

trimmed or slit; "the cut pages of the book") }

Conclusion

226

node layer NLA definition

{ [CUT3, UNCUT3,!] (fashioned or shaped by cutting; "a well-cut suit";

"cut diamonds"; "cut velvet") }

2 adj_pert cut empty definition

3 adj_ppl cut empty definition

4 adv_all cut empty definition

5 noun_Tops cut empty definition

6 noun_act cut

{ cut6, absence,@ (an unexcused absence from class; "he was punished for

taking too many cuts in his math class") }

{ cut5, reduction,@ (the act of reducing the amount or number; "the mayor

proposed extensive cuts in the city budget") }

{ cut, [cutting, verb.creation:cut11,+] cutting_off1, shortening,@ (the act of

shortening something by chopping off the ends; "the barber gave him a good

cut") }

{ cut1, [cutting1, verb.contact:cut10,+ verb.contact:cut,+] division,@ (the

act of cutting something into parts; "his cuts were skillful"; "his cutting of

the cake made a terrible mess") }

{ cut2, [cutting2, verb.contact:cut10,+] opening2,@ (the act of penetrating

or opening open with a sharp edge; "his cut in the lining revealed the hidden

jewels") }

{ cut9, [cutting9, verb.contact:cut5,+] division,@ card_game,#p (the

division of a deck of cards before dealing; "he insisted that we give him the

last cut before every deal"; "the cutting of the cards soon became a ritual") }

{ cut8, [undercut, verb.contact:undercut,+] stroke,@ tennis,;c badminton,;c

squash,;c ((sports) a stroke that puts reverse spin on the ball; "cuts do not

bother a good tennis player") }

Natural Language Addressing

227

In general, Collect/Report Paradigm is illustrated on Figure 85.

Figure 85. Cloud Collect/Report Scheme for Storing and Accessing Big Data

Main advantages of Collect/Report Paradigm (Figure 85) are:

― Collecting information is done by all nodes independently in parallel. It is possible one

node to send information to another;

― Reporting information is provided only by the nodes which really contain information

related to the request; the rest nodes do not react, they remain silent;

― Input data as well as results are in RDF-triple or RDF-quadruple format.

Conclusion

228

Main results presented in the monograph

Chapter 1 introduced the main data structures and storing technologies which further we

will use to compare our results. Mainly they are graph data models as well as RDF storage and

retrieval technologies.

Firstly we defined concepts of storage model and data model.

Mapping of the data models to storage models is based on program tools called “access

methods”. Their main characteristics were outlined.

Graph models and databases were discussed more deeply and examples of different graph

database models were presented. The need to manage information with graph-like nature especially in

RDF-databases had reestablished the relevance of this area.

There is a real need of efficient tools for storing and querying knowledge using the

ontologies and the related resources. In this context, the annotation of unstructured data has become a

necessity in order to increase the efficiency of query processing. Efficient data storage and query

processing that can scale to large amounts of possibly schema-less data has become an important

research topic. The proposed approaches usually rely on (object-) relational database technology or

on main-memory virtual machine implementations, while employing a variety of storage schemes

[Faye et al, 2012].

In accordance with this, the analyses of RDF databases as well as of the storage and

retrieval technologies for RDF structures were in the center of our attention. The analysis of the

viewed tools showed that all of them use data storing models which are limited to text files, indexed

data or relational databases. These approaches do not conform to the specific structures of the

ontologies. This necessitates the development of new models and tools for storing ontologies which

correspond to their structure.

Storing models for several popular ontologies and summary of main types of storing models

for ontologies and, in particular, RDF data were discussed.

At the end of this chapter, our attention was paid to addressing and naming (labeling) in

graphs with regards to introducing the Natural Language Addressing (NL-addressing) in graphs. A

sample graph was analyzed to find its proper representation.

Taking in account the interrelations between nodes and edges, we saw that a “multi-layer”

representation is possible and the identifiers of nodes and edges can be avoided.

Concluding, let us point on advantages and disadvantages of the multi-layer representation

of graphs.

The main disadvantages are:

 The layers are sparsed;

 The number of locations may be very great which causes the need of corresponded

number of columns in the table (in any cases hundred or thousand).

Natural Language Addressing

229

The main advantages are:

 Reducing the used resources;

 The NL-addressing means direct access to content of each cell. Because of this, for NL-

addressing the problem of recompiling the database after updates does not exist. In

addition, the multi-layer representation and natural language addressing reduce

resources and avoid using of supporting indexes for information retrieval services (B-

trees, hash tables, etc.);

 Finally, using NL-addressing, the multi-layer representation is easily understandable by

humans and interpretable by the computers.

If we will use indexed files or relational data bases, the disadvantages are so serious that

make the implementation impossible.

We propose to use a multi-dimensional model for organization of information. It is presented

in next chapter.

Chapter 2 aimed to introduce the theoretical surroundings of our work.

Firstly in this chapter, we remembered the needed basic mathematical concepts. Special

attention was paid to the Names Sets – mathematical structure which we implemented in our research.

We used strong hierarchies of named sets to create a specialized mathematical model for new kind of

organization of information bases called “Multi-Domain Information Model” (MDIM). The

“information spaces” defined in the model are kind of strong hierarchies of enumerations (named

sets).

We will realize MDIM via special kind of hashing. Because of this, we remembered the main
features of hashing and types of hash tables as well as the idea of “Dynamic perfect hashing” and
“Trie”, especially – the “Burst trie”. A burst trie is an in-memory data structure, designed for sets of
records that each has a unique string that identifies the record and acts as a key. Burst trie consists of
three distinct components: a set of records, a set of containers, and an access trie.

Chapter 3 was aimed to introduce a new access method based on the idea of Natural

Language Addressing.

MDIM and its realizations are not ready to support NL-addressing. We upgraded them for

ensuring the features of NL-addressing via new access method called NL-ArM.

The program realization of NL-ArM is based on specialized hash functions and two main

functions for supporting the NL-addressing access.

In addition, several operations were realized to serve the work with thesauruses and

ontologies as well as work with graphs.

NL-ArM is ready for storing RDF information. It is possible to define tree information

models for storing RDF-graphs using NL-ArM: (1) RSO model (Relation-Subject-Object model), (2)

SRO model (Subject-Relation-Object model), and (3) UNL model ((Subject, Relation) => Object

Universal model) .

Conclusion

230

In Chapter 4 two main types of basic experiments were presented. NL-ArM has been

compared with (1) sequential text file of records and (2) relational database management system

Firebird.

The need to compare NL-ArM access method with text files was determined by practical

considerations – in many applications the text files are main approach for storing semi-structured

data. To investigate the size of files and speed of their generation we compared writing in a sequential

text file and in a NL-ArM archive.

For 8 characters as length of the keywords and small quantity of records, the NL-ArM

archive occupies more memory than text file but for the case of very large data the NL-ArM archive is

smaller. It is important to underline that these experiments were based on artificial data with fixed

length (record of 30 bytes with 8 bytes artificially generated keyword of arbitrary ASCII symbols). If

the length of the keywords is variable, the size of NL-ArM archive will be different according of length

of the strings of keywords of stored information, i.e. according of number of layers of hash tables

(depth of trie).

In sequential storing of records, NL-ArM access method is slower than same operation in

text file. For applications where it is important in real time to register incoming information, the text

files are preferable than archives with NL-Addressing.

To provide experiments with a relational database, we have chosen the system “Firebird”. It

should be noted that Firebird and NL-ArM have fundamentally different physical organization of data

and the tests cover small field of features of both systems.

We did not compare the sizes of files of NL-ArM and Firebird because of difference of

keywords – symbols for Firebird and integer values for NL-ArM.

In writing experiments, regarding NL-ArM, Firebird is on average 90.1 times slower. This

result is due to two reasons. The first is that balanced indexes of Firebird need reconstruction for

including of every new keyword. This is time consuming process. The second reason is the speed of

updating NL-ArM hash tables which do not need recompilation after including new information. Due

to specific of realization, for small values of co-ordinates NL-ArM is not as effective as for the great

ones.

In reading experiments, regarding NL-ArM, Firebird is on average 29.8 times slower. This

result is due to the speed of access in NL-ArM hash tables which do not need search operations.

If we need direct access to large dynamic data sets (via NL-path), than more convenient are

hash based tools like NL-ArM. For instance, such cases are large ontologies and RDF-graphs.

In Chapter 5 we have presented several experiments aimed to show the possibilities of NL-

addressing to be used for NL-storing of structured datasets.

Firstly we introduced the idea of knowledge representation. Further in the chapter we

discussed three main experiments - for NL-storing of dictionaries, thesauruses, and ontologies.

Presentations of every experiment started with introductory part aimed to give working

definition and to outline state of the art in storing concrete structures.

Natural Language Addressing

231

The explanation of the experiments begins with the easiest case – storing dictionaries.

Analyzing results from the experiment with a real dictionary data we may conclude that it is possible

to use NL-addressing for storing such information.

Next experiment was aimed to answer to question: “What we gain and loss using

NL-Addressing for storing thesauruses?”

Analyzing results from the experiment we point that the loss is additional memory for storing

hash structures which serve NL-addressing. But the same if no great losses we will have if we will

build balanced search trees or other kind in external indexing. It is difficult to compare with other

systems because such information practically is not published. The benefit is in two main

achievements:

(1) High speed for storing and accessing the information.

(2) The possibility to access the information immediately after storing without recompilation

the database and rebuilding the indexes.

The third experiment considered the complex graph structures such as ontologies. The

presented survey of the state of the art in this area has shown that main models for storing ontologies

are files and relational databases.

Our experiment confirmed the conclusion about losses and benefits from using NL-

addressing given above for thesauruses. The same is valid for more complex structures.

Here we have to note that for static structured datasets it is more convenient to use standard

utilities and complicated indexes. NL-addressing is suitable for dynamic processes of creating and

further development of structured datasets due to avoiding recompilation of the database index

structures and high speed access to every data element.

The goal of the experiments with different small datasets, like dictionary, thesaurus or

ontology, was to discover regularities in the NL-addressing realization. Analyzing Table 25, Table 27,

and Table 33 we may see the main two regularities of storing time using NL-addressing:

― It depends on number of elements in the instances;

― It not depends on number of instances in datasets.

In Chapter 6 we have presented results from series of experiments which were needed to

estimate the storing time of NL-addressing for middle-size and very large RDF-datasets.

We described the experimental storing models and special algorithm for NL-storing RDF

instances. Estimation of experimental systems was provided to make different configurations

comparable. Special proportionality constants for hardware and software were proposed. Using

proportionality constants, experiments with middle-size and large datasets become comparable.

Experiments were provided with both real and artificial datasets. Experimental results were

systematized in corresponded tables. For easy reading visualization by histograms was given.

The goal experiments for NL-storing of middle-size and large RDF-datasets were to estimate

possible further development of NL-ArM. We assumed that its “software growth” will be done in the

same grade as one of the known systems like Virtuoso, Jena, and Sesame. In the next chapter we will

Conclusion

232

analyze what will be the place of NL-ArM in this environment but already we may see that NL-

addressing have good performance and NL-ArM has similar results as Jena and Sesame.

In Chapter 7 we have analyzed experiments presented in previous Chapters 4, 5, and 6,

which contain respectively results from (1) basic experiments; (2) experiments with structured

datasets; (3) experiments with semi-structured datasets. Special attention was paid to analyzing of

storing times of NL-ArM access method and its possibilities for multi-processing.

From experimental data and visualizations we concluded that the NL-access time:

― Depends on number of elements in a dataset’s instances, which have to be stored on

the disk;

― Not depends on number of instances in the dataset.

The second is very important for multi-processing because it means linear reverse

dependence on number of processors.

In Appendix B we outlined some systems which we have analyzed in accordance of further

development and implementing of NL-addressing. Two main groups of systems we have selected are:

― DBMS based approaches (non-native RDF data storage):

Oracle [Oracle, 2013], 3Store [AKT Project, 2013], Jena [Jena, 2013], RDF Suite

[RDF Suite, 2013], Sesame [Sesame, 2012], 4store [4store, 2013];

― Multiple indexing frameworks (native RDF data storage):

YARS [YARS, 2013], Kowari [Kowari, 2004], Virtuoso [Virtuoso, 2013], RDF-3X

[Neumann & Weikum, 2008], Hexastore [Weiss et al, 2008], RDFCube [Matono et al,

2007], BitMat [Atre et al, 2009], Parliament [Kolas et al, 2009].

Taking in account our experiments with relational data base we may conclude that for group

of DBMS based approaches we will have similar proportions if we realize NL-addressing for more

qualitative hardware platforms, for instance cluster machines.

Our approach is analogous to multiple indexing frameworks. The main difference is in

reducing the information via NL-addressing and avoiding its duplicating in indexes. Again, if we

realize NL-addressing for more qualitative hardware platforms, we will receive results which will

outperform the analyzed systems.

What gain and loss using NL-Addressing for RDF storing?

The loss is additional memory for storing internal hash structures. But the same if no great

losses we will have if we will build balanced search trees or other kind in external indexing. It is

difficult to compare with other systems because such information practically is not published.

The benefit is in two main achievements:

― High speed for storing and accessing the information;

― The possibility to update and access the information immediately after storing without

recompilation the database and rebuilding the indexes. This is very important because

half or analyzed systems do not support updates (see Table 77).

Natural Language Addressing

233

The main conclusion is optimistic. The future realization of NL-addressing for cluster

machines and corresponded operation systems is well-founded.

In Chapter 8 some practical aspects of implementation and using of NL-addressing were

discussed in this chapter.

NL-addressing is approach for building a kind of so called “post-relational databases”. In

accordance with this the transition to non-relational data models was outlined.

The implementations have to be done following corresponded methodologies for building

and using of ontologies. Such known methodology was discussed in the chapter. It is called

“METHONTOLOGY” and guides in how to carry out the whole ontology development through the

specification, the conceptualization, the formalization, the implementation and the maintenance of the

ontology.

Special case is creating of ontologies of text documents which are based on domain

ontologies. It consists of Document annotation and Ontology population which we illustrated

following the known OntoPop platform [Amardeilh, 2006].

The software realized in this research was practically tested as a part of an instrumental

system for automated construction of ontologies "ICON" (“Instrumental Complex for Ontology

designatioN”) which is under development in the Institute of Cybernetics “V.M.Glushkov” of NAS of

Ukraine.

In this chapter we briefly presented ICON and its structure. Attention was paid to the storing

of internal information resources of ICON realized on the base of NL-addressing and experimental

programs WordArM and OntoArM.

ICON is still under developing and, during solving concrete problems, new functions based

on NL-addressing and NL-ArM rise to be realized. For instance, such problems concern the

operations with ontologies; work with very large ontological structures; etc.

Finally, in the Conclusion, we presented shortly the next steps. Special attention was done

on the area of so called “Big Data” and possible implementation of NLA for processing of large

semi-structured data sets. New realization of the access method called BigArM and connected to it

Collect/Report Paradigm were outlined. Main advantages of Collect/Report Paradigm are (1)

Collecting information is done by all nodes independently in parallel. It is possible one node to send

information to another; (2) Reporting information is provided only by the nodes which really contain

information related to the request; the rest nodes do not react, they remain silent; (3) Results are in

RDF-triple or RDF-quadruple format.

