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6 Experiments for NL-storing of middle-size and large 

RDF-datasets 

Abstract 

In this chapter we will present results from series of experiments which are needed to 

estimate the storing time of NL-addressing for middle-size and large RDF-datasets. 

The experiments for NL-storing of middle-size and large RDF-datasets are aimed to estimate 

possible further development of NL-ArM. We assume that its “software growth” will be done in the 

same grade as one of the known systems like Virtuoso, Jena, and Sesame. We will analyze what will be 

the place of NL-ArM in this environment. Our hypothesis is that NL-addressing will have good 

performance. 

Chapter will start with describing the experimental storing models and algorithm used in 

this research. Further an estimation of experimental systems will be provided to make different 

configurations comparable. Special proportionality constants for hardware and software will be 

proposed. Using proportionality constants, experiments with middle-size and large datasets became 

comparable. 

Experiments will be provided with both real and artificial datasets. Experimental results will 

be systematized in corresponded tables. For easy reading visualization by histograms will be given. 

6.1 Experimental storing model 

Our first experiments in this research were to realize a small multi-language dictionary. In 

this case, NL-storing model is simple because the one-one correspondence “word - definition”. The 

storing models for thesauruses are more complicated due to existing more than one corresponding 

definitions for a given word. Because of this, we outlined and analyzed the storing model of WordNet 

thesaurus [WordNet, 2012]. The idea was to use NL-addressing to realize the WordNet lexical 

database and this way to avoid recompilation of its database after every update. The program used for 

the experiments was “WordArM” (see Appendix A). 

The next step of experiments was storing graphs and ontologies which have one important 

aspect – the layers which correspond to types of relations between nodes of graph or ontology 

[Ivanova et al, 2013e]. To make experiments with real data, we have used the WordNet as ontology 

and its 45 types of relations (given by its files of different types) we have stored as 45 layers. To 

provide experiments in this case, we used program “OntoArM” (see Appendix A). 
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The goal of the experiments with different small datasets, like dictionary, thesaurus or 

ontology, was to discover regularities in the NL-addressing realization. More concretely, two 

regularities of time for storing by using NL-addressing were discovered: 

― It depends on number of elements in the instances;  

― It not depends on number of instances in datasets. 

The experiments for NL-storing of middle-size and large RDF-datasets have another goal. 

We are interested to estimate possible further development of NL-ArM. We assume that its “software 

growth” will be done in the same grade as one of the known systems like Virtuoso, Jena, and Sesame. 

We will analyze what will be the place of NL-ArM in this environment. Our hypothesis is that 

NL-addressing will have good performance. 

Now, our next step is to provide experiments to use NL-addressing for storing middle-size 

and large RDF-datasets. We have realized experimental program RDFArM (see Appendix A) for 

storing RDF-datasets. 

Let remember from Chapter 1 that the primary goal of Resource Description Framework 

(RDF) is to handle non regular or semi-structured data [Muys, 2007]. RDF provides a general method 

to decompose any information into pieces called triples [Briggs, 2012]: 

― Each triple is of the form “Subject”, “Predicate”, “Object”; 

― Subject and Object are the names for two things in the world. Predicate is the 

relationship between them; 

― Subject, Predicate, Object may be given as URI’s (stand-ins for things in the real world); 

― Object can additionally be raw text. 

The power of RDF relies on the flexibility in representing arbitrary structure without a priori 

schemas. Each edge in the graph is a single fact, a single statement, similar to the relationship between 

a single cell in a relational table and its row’s primary key. RDF offers the ability to specify concepts 

and link them together into a graph of data [Faye et al, 2012]. 

Middle-size RDF-datasets are those which contain from several hundred thousand up to 10 

millions of RDF-instances. 

Large RDF-datasets may contain 50, 100, or more millions, as well as billions or trillions of 

RDF-instances. 

Unfortunately, due to financial limitations, we have no proper hardware for making 

comprehensive program experiments with many gigabytes of source data. Because of this, storing of 

very large RDF structures by NL- addressing is planned as future work. Here we will outline partial 

experiments with limited quantity from several hundred thousand up to 100 millions of triples or 

quadruples due to small main and hard disk memory as well as computational possibilities for 

processing very large datasets both by our program and by other installations. 

In the same time, due to constant complexity of NL-addressing, we may extrapolate the 

results and provide preliminary comparison with published benchmarks of known RDF-stores using 

corresponded normalizing the results. 
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 Experimental datasets 

We will provide experiments with middle-size RDF-datasets, based on selected real middle-

size datasets from DBpedia's homepages [DBpedia, 2007a; DBpedia, 2007b] and artificial middle-size 

datasets from Berlin SPARQL Bench Mark (BSBM) [Bizer & Schultz, 2008; Bizer & Schultz, 2009]. 

Real large datasets are taken from DBpedia's homepages [DBpedia, 2007c], BSBM [Bizer & 

Schultz, 2009] and Billion Triple Challenge (BTC) 2012 [BTC, 2012]. Artificial large datasets are 

taken from Berlin SPARQL Bench Mark (BSBM) [Bizer & Schultz, 2009]. 

The reason to make this choice is that we want to provide experiments with both real and 

artificial data. The artificial datasets like BSBM [BSBM, 2012] contain standard artificially generated 

data and it is possible to adapt the software to have best results just for this kind of data. The DBpedia 

and BTC datasets were crawled using several seed sets collected from multiple real sources. Data in 

BTC datasets are encoded in N-Quads format. 

The N-Quads is a format that extends N-triples with context. Each triple in  

N-Quad’s document can have an optional context value [N-Quads, 2013]: 

<subject> <predicate> <object> <context>. 

as opposed to N-triples, where each triple has the form: 

<subject> <predicate> <object>. 

The notion of provenance is essential when integrating data from different sources. 

Therefore, modern RDF repositories store “subject-predicate-object-context” quadruples, where the 

context typically denotes the provenance of a given statement. The SPARQL query language can 

query such RDF datasets or entire collections of RDF graphs [SPARQL, 2013]. The context element is 

also sometimes used to track a dimension such as time or geographic location. 

Applications of N-Quads include:  

― Exchange of RDF datasets between RDF repositories, where the fourth element is the 

URI of the graph that contains each statement; 

― Exchange of collections of RDF documents, where the fourth element is the HTTP URI 

from which the document was originally retrieved; 

― Publishing of complex RDF knowledge bases, where the original provenance of each 

statement has to be kept intact. 

N-Quads inherit the practical advantages of N-Triples: 

― Simple parsing; 

― Succinctness compared to alternatives such as reification or multi-document archives; 

― Effective streaming and processing with line-based tools. 

Let see a quadruple from BTC extracted from the data set [datahub_data0, 2012]: 

 

<http://nektar.oszk.hu/resource/auth/magyar_irodalom><http://www.w3.org/2004/02/skos/core#nar

rower><http://nektar.oszk.hu/resource/auth/hungarikum><http://nektar.oszk.hu/data/auth/magyar

_irodalom>. 
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In this quadruple: 

<subject> = <http://nektar.oszk.hu/resource/auth/magyar_irodalom> 

<predicate> = <http://www.w3.org/2004/02/skos/core#narrower> 

<object> = <http://nektar.oszk.hu/resource/auth/hungarikum> 

<context> = <http://nektar.oszk.hu/data/auth/magyar_irodalom> 

 Storing models 

The storing models we will use are multi-layer. First two models are for  

N-Triples and the third is for N-Quads format. 

In the first storing model, values of Predicates may be names of the layers (archives), the 

Subjects will be the NL-addresses, and only Objects will be saved. 

In the second storing model, values of Subjects and Predicates will be the NL-addresses in 

the same archive, and only Objects will be saved using couple (Subject, Relation) as co-ordinates of 

container where the Object will be saved. 

In the third storing model, values of Subjects and Predicates will be the NL-addresses but 

Objects and Contexts will be saved in different archives using couple (Subject, Relation) as co-

ordinates. 

6.2 Experimental storing algorithm 

All storing models pointed above may be generalized in one common model where Subjects, 

Predicates, Objects, and Contexts are numbered separately and these numbers are used to construct 

storing co-ordinates. For triple datasets the elements which contain context have to be omitted. 

The experimental storing algorithm is illustrated on Figure 50. Main idea is to use 

NL-addressing for quick unique numbering of elements of triples/quadruples and after that to use these 

numbers as co-ordinates for storing information in the archives. In this case we have two kinds of 

archives (1) archive of counters and (2) archive of values. 

In Figure 50 we illustrated storing of RDF – triple  

 

(beer, is, proof that...) 

 

First we assign a number to subject – in this case: “beer”. 

The same we do for the relation – in this case: “is”. 

And after that we used these numbers as coordinates of the object - in this case: “proof that 

...”. 
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Figure 50. Illustration of the experimental storing algorithm 

 Common storing algorithm based on NL-addressing 

1. Read a quadruple from input file. 

2. Assign unique numbers to the <subject>, <predicate>, <object>, and <context>, 

respectively denoted by NS, NP, NO, and NC. The algorithm of this step is given 

below. 

3. Store the structures: 

― {NO; NC} in the “object” index archive using the path (NS, NP); 

― {NS; NC} in the “subject” index archive using the path (NP, NO); 

― {NP; NC} in the “predicate” index archive using the path (NS, NO). 

4. Repeat from 1 until there are new quadruples, i.e. till end of file. 

5. Stop. 

 Algorithm for assigning unique numbers 

1. A separate counters for the <subject>, <predicate>, <object>, and <context> are used. 

Counters start from 1. 

2. A separate NL-archives for the <subject>, <predicate>, <object>, and <context> are 

used. 
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3. In every NL-archive, using the values of respectively <subject>, <predicate>, <object>, 

and <context> as paths: 

IF no counter value exist at the corresponded path 

THAN 

― Store value of corresponded counter in the container located by the path; 

― Store the content of <subject>, <predicate>, <object>, or <context> respectively in 

corresponded data archive in hash table 1 (domain 1) using the value of the counter 

as path; 

― Increment the corresponded counter by 1. 

ELSE assign the existing value of counter as number of NS, NP, NO, and NC, 

respectively. 

4. Return. 

 Algorithm for reading based on NL-addressing 

1. Read the request from screen form or file. The request may contain a part of the 

elements of the quadruple. Missing elements are requested to be found. 

2. From every NL-archive, using the values of given respectively <subject>, <predicate>, 

<object>, or <context> as NL-addresses read the values of corresponded counters NS, 

NP, NO, or NC. 

3. If the corresponded co-ordinate couple exist, read the structures: 

― {NO; NC} from the “object” index archive using path (NS, NP); 

― {NS; NC} from the “subject” index archive using path (NP, NO); 

― {NP; NC} from the “predicate” index archive using path (NS, NO). 

4. IF all elements of the set {NS, NP, NO, NC} are given: 

THAN using the set {NS, NP, NO, NC} read the quadruple elements (from 

corresponded data archives). 

ELSE using given values of the elements of the set {NS, NP, NO, NC} scan all possible 

values of the unknown elements to reconstruct the set {NS, NP, NO, NC}. The result 

contains all possible quadruples for the requested values. 

5. End. 
 

Comment: If any of parameters are not given, i.e. <subject>, <predicate>, <object>, or 

<context>, as in SPARQL requests, the rest are used as constant addresses and omitted parameters 

scan all non empty co-ordinates for given position. This way all possible requests like (?S-?P-?O),  

(S-P-?O), (S-?P-O), (?S-P-O), etc., are covered (S stands for subject, P for property, O for object). For 

more information about SPARQL see [SPARQL, 2013] as well as short outline of it in the end of 

Appendix B. 

No search indexes are needed and no recompilation of the data base is required after update 

or adding new information in the data base. 
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6.3 Estimation of experimental systems 

The goal of experiments presented in this chapter is to compare loading times of the 

experimental program RDFArM with ones of several known systems measured for various datasets. 

For this purpose, due to different characteristics of the experimental computer configurations and 

software systems, we need to apply some proportionality constants to make results comparable. 

Evaluation, comparison, and selection of modern computer and communication systems are 

complex decision problem. System evaluation techniques can be either qualitative or quantitative 

[Dujmovi'c, 1996]: 

― Qualitative techniques are usually based on a list of features to be analyzed for each 

competitive system. The list includes technical characteristics, costs, and other 

components for evaluation. After a study of proposed systems the evaluator creates for 

each proposal a list of advantages and a list of disadvantages. The lists summarizing 

advantages and disadvantages are then intuitively compared and the final ranking of 

proposed systems is suggested. Such an approach is obviously attractive only when the 

decision problem is sufficiently simple. In cases with many decision criteria it is difficult 

to properly intuitively aggregate a number of components affecting the final decision, 

and it is not possible to precisely identify minor differences between similar proposals. 

In addition, it is extremely difficult to justify whether a given difference in total cost is 

commensurate to a corresponding difference in total performance. These difficulties can 

be reduced by introducing quantitative components in the decision process 

[Dujmovi'c, 1996]. 

― The aim of quantitative methods is to make the system evaluation process well 

structured, relatively simple, and accurate, providing global quantitative indicators which 

are used to find and to justify the optimum decision [Dujmovi'c, 1996]. 

For purposes of this research we will use simple evaluation system based on traditional 

scoring techniques. The basic idea is very simple [Dujmovi'c, 1996]: for a set of evaluated systems we 

first identify n relevant components (performance variables) that are individually evaluated. The 

results of evaluation are individual normalized scores E1, ..., En, where 0  Ei  1 (or 0  Ei  100%). 

The average score is then 

E = (E1  + ... + En)/n. 

If all components are not equally important then we introduce positive normalized weights, 

which reflect the relative importance of individual components. W1,...,Wn. Usually, 0  Wi  1, i = 1, 

2,..., n, and W1+ ... +Wn = 1.  

The global score is defined as a weighted arithmetic mean: 

E = W1E1 + W2E2 +...WnEn, 0  E  1. 

Below we will compare our benchmark hardware configuration with three others. The 

characteristics we will take in account are Processor, Physical Memory and Hard Disk capacity. We 

assume that the operating systems and service software are equivalent in all cases. For concrete 

computer systems used in the experiments we have respectively: 
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 Configuration K is our benchmark configuration: 

― Processor: Intel Core2 Duo T9550 2.66GHz; CPU Launched: 2009, 

Average CPU Mark: 1810 (PK=1810) [T9550, 2009] 

http://www.cpubenchmark.net/cpu.php?cpu=Intel+Core2+Duo+T9550+%40+2.66GHz

&id=1011; 

― Physical Memory: 4.00 GB (MK=4); 

― Hard Disk: 100 GB data partition; 2 GB swap (DK=100); 

― Operating System: 64-bit operating system Windows 7 Ultimate SP1. 

Characteristic values of Configuration K are: PK=1810, MK=4, DK=100. 

 
 

 Configuration A is benchmark configuration of [Becker, 2008]: 
― Processor: Intel Pentium Dual Core 2.8 GHz; CPU Launched: 2008; 

Average CPU Mark: 598 (PA =598) [Pentium Dual, 2008]; 

― Physical Memory: 1 GB (MA =1); 

― Hard Disk: 40 GB data partition; 2 GB swap (DA =40); 

― Operating System: Ubuntu Linux 7.10 64-bit. 

Characteristic values of Configuration A are: PA =598, MA =1, DA =40. 

 
 

 Configuration B: is benchmark configuration of [BSBMv2, 2008] and [BSBMv3, 2009] 

DELL workstation: 

― Processor: Intel Core2Quad Q9450 @ 2.66GHz, CPU Launched:2008, 

Average CPU Mark: 3791 (PB =3791) [Q9450, 2008]; 

― Physical Memory: 8GB DDR2 667 (4 x 2GB) (MB =8); 

― Hard Disks: 160GB (10,000 rpm) SATA2, 750GB (7,200 rpm) SATA2 

(DB = 160 + 750 = 910); 

― Operating System: Ubuntu 8.04 64-bit, Kernel Linux 2.6.24-16-generic; Java Runtime: 

VM 1.6.0, HotSpot(TM) 64-Bit Server VM (build 10.0-b23); Separate partitions for 

application data (on 7,200 rpm HDD) and data bases (on 10,000 rpm HDD). 

Characteristic values of Configuration B are: PB =3791, MB =8, DB =910. 

 
 

 Configuration C is benchmark configuration used for LDIF [LDIF Benchmarks, 2013; 

LDIF, 2013]: 

― Processor: Intel i7 950, 3.07GHz (quad core); CPU Launched: 2009, Average CPU Mark: 

5664 (PC =5664) [i7 950, 2009]; 

― Physical Memory: 24GB (MC =24); 

― Hard Disks: 2 × 1.8TB (7,200 rpm) SATA2 (DC =3600); 

― Operating System: Ubuntu 11.04 64-bit, Kernel: 2.6.38-10; Java version: 1.6.0_22. 

Characteristic values of Configuration C are: PC =5664, MC =24, DC =3600. 
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 Global scores of computer configurations 

Normalized estimation EP of processors’ power will be computed by formula: 

i
p

K

PE i A B C
P

, , ,   

where Pj, j=K,A,B,C is the processor’s average CPU mark. 

We assume that the processors’ power is very important and because of this we will use 

processors weight as 0.5, i.e.  

WP = 0.5. 

Normalized estimation EM of physical memory will be computed by formula: 

i
M

K

ME i A B C
M

, , ,   

where Mj, j=K,A,B,C is the size of main memory in Giga bytes. 

We assume that main memory is more important than hard disk memory and because of this 

we will use main memory weight as 0.3, i.e. 

WM = 0.3. 

Normalized estimation EHD of hard disk capacity will be computed by formula: 

i
D

K

DE i A B C
D

, , ,   

where Dj, j=K,A,B,C is the size of hard disk memory in Giga bytes. 

We assume that the hard disk memory weight as 0.2, i.e.  

WD = 0.2. 

Formula for computing the global score of computer configuration is defined as a weighted 

arithmetic mean: 

Ei = WP EP + WM EM + WD ED 

or 

Ei = 0.5 EP + 0.3 EM + 0.2 ED 

 Global scores of experimental computer configurations 

The global scores of experimental computer configurations are as follow. 

 Global score EK of configuration K is 1: 

PK=1810; EKP  = 1810/1810 = 1

MK=4; EKM = 4/4 = 1

DK=100; EKD = 100/100 = 1

EK = 0.5EKP + 0.3EKM + 0.2EKD = 0.5*1+0.3*1+0.2*1 = 

= 0.5+0.3+0.2 = 1 

 Global score EA of configuration A is 0.32: 

PA=598; EAP  = 598/1810 = 0.33

MA=1; EAM = 1/4 = 0.25

DA=40; EAD = 40/100 = 0.40

EA = 0.5EAP+0.3EAM+0.2EAD = 0.5*0.33+0.3*0.25+0.2*0.40 =  

= 0.165+0.075+0.08 = 0.32 
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 Global score EB of configuration B is 3.465: 

PB=3791 EBP  = 3791/1810 = 2.09

MB=8 EBM = 8/4 = 2 

DB=910 EBD = 910/100 = 9.1 

EB = 0.5EBP+0.3EBM+0.2EBD = 0.5*2.09+0.3*2+0.2*9.1 = 

= 1.045+0.6+1.82 = 3.465 

 Global score EC of configuration C is 10.565: 

PC=5664; ECP  = 5664/1810 = 3.13

MC=24; ECM = 24/4 = 6 

DC=3600; ECH = 3600/100 = 36 

EC = 0.5ECP+0.3ECM+0.2ECD = 0.5*3.13+0.3*6+0.2*36= 

= 1.565+1.8+7.2 = 10.565 

 Hardware proportionality constants 

The hardware proportionality constants Hi, i = A, B, C, for normalizing our results to be 

comparable with results received on other computer configurations are as follow: 

K∝A : HA = EK/EA = 1 / 0.32 = 3.125

K∝B : HB = EK/EB = 1 / 3.465 = 0.289

K∝C : HC = EK/EC = 1 / 10.565 = 0.095

 Comparing software systems’ performance 

Enhancing the hardware power does not cause linear enhancing of the software performance. 

To discover the value of growth one has to test both source and enhanced systems running equal or 

similar software. 

In our case we have the same problem. Configurations A, K, B, and C, may be ordered by 

their Average CPU Marks as well as their General scores. In both cases we need to discover the 

growth of software performance for different configurations. This is needed because we want to have 

common basis for comparing our load time with those of other systems which are tested on different 

computer configurations. 

For this purpose we will follow simple algorithm. 

Let program system X is tested on two computer configurations: U and W, where W is 

enhanced configuration; and program system Y is tested on different computer configuration V of the 

same class and similar characteristics as U. We have couples (X,U), (X,W), and (Y,V). 

Computer configurations U and W are not available for testing and all work has to be done 

on computer configuration V. 

Computer configurations’ global scores are respectively: 

EU = 0.3, EV = 1, and EW = 3. 
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X is tested on U by dataset S1 with 200 instances and on W with similar dataset S2 with 250 

instances. 

Y is tested on configuration V by datasets S1 and S2. 

Loading times are respectively: 

L(X,U,S1)=1000 sec., L(X,W,S2)=5 sec.; 

L(Y,V,S1)=400 sec., L(Y,V,S2)=500 sec. 

The problem we have to solve is: 

“What will be the loading time of system Y if it will be run on computer configuration W 

with dataset S2?” i.e. L(Y,W,S2) = ?. 

Firstly we will illustrate the algorithm and after that we will give it in details. 

 

We have the diagram (Figure 51): 

 

 

Figure 51. Interrelations between computer configurations 

 

Using published data we may estimate interrelations between computer configurations U and 

W as well as between two versions of system X run on U and W. We have to use hardware 

proportionality constants to make data comparable and to compute the ratio coefficient of software 

growth by dividing the loading time on W by one on U. 

To make data from experiments on V comparable with these on U and W we assume that V 

and U are from the same class of computer power and there is no software growth for a system Y in 

the transition from V to U. In other words, to estimate interrelations between computer configurations 

V and U we need only hardware proportionality constant. After this step we will have data from 

experiments on V transferred for the U, i.e. we will have results from system Y as if the system Y is 

tested on configuration U. 

We assume that the possible software growth of system Y from computer U to W is the same 

as for the system X, i.e. we can use the same coefficient for software growth for systems X and Y. 

This way we will have comparable data for computer configuration W. 
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Below the algorithm is given in details: 

1. Reduce loading time L(X,W,S2) of program system X, run on computer configuration W and 

dataset S2 with |S2|=250 instances, to loading time L(X,W,S2’) of X for hypothetical dataset S2’ with 

|S2’|=|S1|=200 instances, using the formula: 

L(X,W,S2’) = |S2’| * (L(X,W,S2)/ |S2|) = 

= |S1| * (L(X,W,S2)/ |S2|) = 200*(5/250) = 4 

 

2. Compute ratio coefficient of growth GUW from (X,U) to (X,W) by equation: 

GUW = L(X,U,S1)/L(X,W,S2’) = 1000/4 = 250 

3. Compute loading time L(Y,U,S2) of system Y with dataset S2 if it is hypothetically ran on 

configuration U, using hardware proportionality constant HVU: 

V∝U : HVU = EV/EU = 1 / 0.3 = 3.33

and formula: 

L(Y,U,S2) = HVU*L(Y,V,S2) = 3.33*L(Y,V,S2) = 3.33*500 = 1665 

4. Compute loading time L(Y,W,S2) of system Y with dataset S2 if it is hypothetically ran on 

configuration W, using ratio coefficient of growth GUW, hypothetical loading time L(Y,U,S2), and 

formula: 

L(Y,W,S2) = L(Y,U,S2)/GUW = L(Y,U,S2) / 250 = 1665/250 = 6.66 

This way we have received comparable value of loading time of system Y with system X for 

computer configuration W, i.e. 

L(X,W,S2)=5 sec. and L (Y,W,S2) = 6.66 sec. 

and we may conclude that system X will have a little better loading time than system Y if both are run 

on computer configuration W with dataset S2. 

One may suppose that we may use directly proportionality constant HWV: 

W∝V : HWV = EW/EV = 3 / 1 = 3

and to reduce L(Y,V,S2)=500 sec. three times, i.e. 500/3 = 166.66. 

This is not correct because the software growth is not taken in account.  

We have to calculate possible software growth from V to W again going through U and 

using GUW to calculate possible GVW. This may be done by using the proportionality constant HVU 

because we need to calibrate growth from U to W by hardware proportionality of V and U. In other 

words, to receive value of growth GVW from V to W we have to compute: 

GVW = GUW/HVU 

Finally: 

L(Y,W,S2) = L(Y,V,S2)/GVW 

Let see it for concrete values: 

GUW = L(X,U,S1)/L(X,W,S2’) = 1000/4 = 250 

HVU = EV/EU = 1 / 0.3 = 3.33

GVW = (GUW/HVU) = (250/3.33) = 75.07 

L(Y,W,S2) = L(Y,V,S2)/GVW = 500 / 75.07 = 6.66 

We received the same result as algorithm above. This proves that we have equivalent 

approaches. 



Experiments for NL-storing of middle-size and large RDF-datasets 

 

162

The algorithm may be presented by a formula: 

Y W S YVW Y V SL R L( , , 2) ( , , 2)*  

where 

v X W S
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U X U S

E S L
R

E S L
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( , , 1)

* | 1|*
* | 2 |*

  

i.e. 

v X W S
Y W S Y V S

U X U S

E S L
L L

E S L
( , , 2)

( , , 2) ( , , 2)
( , , 1)

* | 1 |*
*

* | 2 |*
  

 
where: 

― X, Y - program systems; 

― U, V, W – computer configurations; 

― (X,U), (X,W), (Y,V) – couples “program system – computer configuration”; 

― EU, EV, EW - computer configurations’ global scores; 

― S1, S2 – datasets; 

― L(X,U,S1), L(X,W,S2), L(Y,V,S1), L(Y,V,S2), L(Y,W,S2) - loading times of given program system, 

computer configuration, and dataset; 

― HVU – computer configurations’ proportionality constant; 

― GUW – ratio coefficient of growth of software system during migration from a computer 

configuration to enhanced one. 

 Experimental environment 

Our experimental environment includes program systems, computer configurations, datasets 

and experimental data like published benchmark results, different constants, ratio coefficients, etc. The 

main concrete elements of our experimental environment are: 

― Program systems to be compared are: 

- RDFArM; 

- Virtuoso; 

- Jena; 

- Sesame. 

Virtuoso, Jena and Sesame have several variants depending of database used. These 

variants have different loading times on the same computer configurations. In our 

comparisons we will take the best result from the all benchmarks on given 

configuration. 

― Computer configurations used for benchmarking are A, K, B, C; 

― Couples “program system – computer configuration” are: 

- (RDFArM, K);  

- (Virtuoso, A), (Virtuoso, B), (Virtuoso, C); 

- (Jena, A), (Jena, B), (Jena, C); 

- (Sesame, A), (Sesame, B), (Sesame, C). 

― Computer configurations’ global scores are EA, EK, EB, and EC; 
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― Middle-size datasets are: 

- BSBM 50K; 

- homepages-fixed.nt; 

- BSBM 250K; 

- geocoordinates-fixed.nt; 

- BSBM 1M; 

- BSBM 5M. 

― Large size datasets are: 

- infoboxes-fixed.nt; 

- BSBM 25M; 

- BSBM 100M. 

― Proportionality constant between computer configurations K and A is HKA; 

― Ratio coefficient of growth of software systems during migration from computer 

configuration A to enhanced ones B and C are GAB and GAC; 

― Corresponded loading times L will be presented at the places where they will be used. 

 Software proportionality constants 

To provide concrete comparisons of our experimental loading time data, we have to compute 

HKA, GAB, and GAC. 

For purposes of this research it is enough to compute average constants HKA, GAB, and GAC 

based on average loading data for all chosen systems. We will use published benchmark results done 

by Freie Universität Berlin, Web-based Systems Group (BSBM team) and available both as printed 

publication and free accessible data in the Internet. 

 Software proportionality for configurations K, A, and B 

Benchmark results for dataset S1 (homepages-fixed.nt; 200 036 triples) used for benchmarks 

on Configuration A are published in [Becker, 2008] and reproduced in Table 35. 

Table 35. Benchmark results for dataset S1 (homepages-fixed.nt) 

system loading time 
in seconds 

the best time 
in seconds 

Virtuoso (ogps, pogs, psog, sopg) 1327 1327 

Jena SDB MySQL Layout 2 Index 5245 

3557 Jena SDB Postgre SQL Layout 2 Index 3557 

Jena SDB Postgre SQL Layout 2 Hash 9681 

Sesame Native (spoc, posc) 2404 2404 

Total average time in seconds: 2429.333 
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Benchmark results for dataset S2 (BSBM 250K; 250 030 triples) used for benchmarks on 

Configuration B are published in [BSBMv2, 2008] and reproduced in Table 36. 

Table 36. Benchmark results for dataset S2 (BSBM 250K) 

system loading time in seconds 

Virtuoso 33 

Jena SDB 24 

Sesame 18 

Total average time in seconds: 25 

 

Due to equal systems and range of their loading times on the same computer configuration, 

we will use total average times as loading times of virtual system X, i.e. L(X,A,S1) = 2429.333 and 

L(X,B,S2) = 25. 

Following our algorithm, we reduce loading time L(X,B,S2) of virtual system X, run on 

computer configuration B and dataset S2 with |S2|=250 030 triples, to loading time L(X,B,S2’) of X for 

hypothetical dataset S2’ with |S2’|=|S1|=200 036 instances, using the formula 

L(X,B,S2’) = |S1| * (L(X,B,S2)/ |S2|) = 200036*(25/250030) = 20.00. 

We compute ratio coefficient of growth GAB from (X,A) to (X,B) by equation: 

GAB = L(X,A,S1)/L(X,B,S2’) = 2429.333/20 = 121.46665. 

Hardware proportionality constant HAK is: 

A∝K : HAK = EK/EA = 1 / 0.32 = 3.125

Really measured RDFArM loading time on Configuration K for dataset S2 is 575.069 sec. 

We compute loading time L(RDFArM,A,S2) using formula:  

L(RDFArM,A,S2) = HAK*L(RDFArM,K,S2) = 3.125*575.069 = 1797.09. 

At the end, we compute loading time L(RDFArM,B,S2) of system RDFArM with dataset S2 if it 

is hypothetically run on configuration B, using ratio coefficient of growth GAB, hypothetical loading 

time L(RDFArM,A,S2), and formula: 

L(RDFArM,B,S2) = L(RDFArM,A,S2)/GAB = 1797.09 / 121.46665= 14.796 

 

To verify our computations and to show the easiest way to find L(RDFArM,B,S2), we will use 

our formula 

RDFArM B S RDFArM K B RDFArM K SL R L( , , 2) , , ( , , 2)*  

i.e. we have to compute RRDFArM,K,B one time and to use it in benchmarks for all datasets. RRDFArM,K,B 

may be computed by formula: 

K X B S
RDFArM A B

A X A S

E S L
R

E S L
( , , 2)

, ,
( , , 1)

* | 1 |*
* | 2 |*
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or in linear view: 

RRDFArM,K,B = (EK * |S1| * L(X,B,S2)) / (EA * |S2| * L(X,A,S1)) = 

= (1 * 200036 * 25) / (0.32 * 250030 * 2429.333) = 

= 5000900 / 194369961.5968= 0.025729. 

 

We compute loading time L(RDFArM,B,S2) of system RDFArM with dataset S2 if it is 

hypothetically run on configuration B, using ratio coefficient RRDFArM,K,B: 

L(RDFArM,B,S2) = L(RDFArM,K,S2) * RRDFArM,K,B = 575.069 * 0.025729 = 14.796. 

 

We receive the same result. 

 Software proportionality for configurations K, A, and C 

Software proportionality for configurations K, A, and C will be computed based on the 

performance of systems Virtuoso and Jena because missing information about Sesame in the 

benchmark publications. 

Benchmark results for dataset S1 (infoboxes-fixed.nt; 15,472,624 triples) used for 

benchmarks on Configuration A are published in [Becker, 2008] and reproduced in Table 37. 

Table 37. Benchmark results for dataset S1 (infoboxes-fixed.nt) 

system loading time in 

seconds 

the best time 
in seconds 

Virtuoso 7017 7017 

Jena SDB MySQL Layout 2 Index 70851 70851 

Jena SDB Postgre SQL Layout 2 Index 73199 

Jena SDB Postgre SQL Layout 2 Hash 734285 

Total average time: 38934 

 

Benchmark results for dataset S2 (BSBM 100M; 100 000 748 triples) used for benchmarks 

on Configuration C are published in [BSBMv6, 2011] and reproduced in Table 38. 
 

Table 38. Benchmark results for dataset S2 (BSBM 100M) 

system loading time in seconds 

Virtuoso 6566 

Jena TDB 4488 

Total average time: 5527 
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Following our algorithm, we reduce loading time L(X,C,S2) of virtual system X, run on 

computer configuration C and dataset S2 with |S2|=100 000 748 triples, to loading time L(X,C,S2’) of X 

for hypothetical dataset S2’ with |S2’|=|S1|=15 472 624 instances, using the formula: 

L(X,C,S2’) = |S1| * (L(X,C,S2)/ |S2|) =  

= 15472624*(5527/100000748) = 855.166. 

We compute ratio coefficient of growth GAC from (X,A) to (X,C) by equation: 

GAC = L(X,A,S1)/L(X,C,S2’) = 38934/855.166 = 45.528. 

Hardware proportionality constant HAK is: 

A∝K : HAK = EK/EA = 1 / 0.32 = 3.125.

Really measured RDFArM loading time on Configuration K for dataset S2 is 43652.528 

sec. We compute loading time L(RDFArM,A,S2) using formula: 

L(RDFArM,A,S2) = HAK*L(RDFArM,K,S2) = 3.125*43652.528 = 136414.15. 

At the end, we compute loading time L(RDFArM,C,S2) of system RDFArM with dataset S2 if it 

is hypothetically run on configuration C, using ratio coefficient of growth GAC, hypothetical loading 

time L(RDFArM,A,S2), and formula: 

L(RDFArM,C,S2) = L(RDFArM,A,S2)/GAC = 136414.15/45.528= 2996.27 sec. 

To verify our computations and to show the easiest way to find L(RDFArM,C,S2), we will use 

our formula 

RDFArM C S RDFArM K C RDFArM K SL R L( , , 2) , , ( , , 2)*  

i.e. we have to compute RRDFArM,K,C one time and to use it in benchmarks for all datasets. RRDFArM,K,C 

may be computed by formula: 

K X C S
RDFArM A C

A X A S

E S L
R

E S L
( , , 2)

, ,
( , , 1)

* | 1 |*
* | 2 |*

  

or in linear view: 

RRDFArM,K,C = (EK * |S1| * L(X,C,S2)) / (EA * |S2| * L(X,A,S1)) = 

= (1 * 15472624 * 5527) / (0.32 * 100000748 * 38934) = 

= 85517192848 / 1245897319242.24 = 0.068639. 

We compute loading time L(RDFArM,C,S2) of system RDFArM with dataset S2 if it is 

hypothetically run on configuration C, using ratio coefficient RRDFArM,K,C: 

L(RDFArM,C,S2) = L(RDFArM,K,S2) * RRDFArM,K,C = 43652.528 * 0.068639= 2996.27. 

We receive same result. 

 Ratio coefficients 

To compare our results from experiments on computer configuration K 

we will use ratio coefficients: 

― For published results received on computer configuration A: 

L(RDFArM,A,S2) = L(RDFArM,K,S2) * 3.125; 

― For published results received on computer configuration B: 

L(RDFArM,B,S2) = L(RDFArM,K,S2) * 0.025729; 

― For published results received on computer configuration C: 

L(RDFArM,C,S2) = L(RDFArM,K,S2) *0.068639. 
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6.4 Experiments with middle-size datasets 

We will compare RDFArM with RDF-stores: 

― OpenLink Virtuoso Open-Source Edition 5.0.2 [Virtuoso, 2013]; 

― Jena SDB Beta 1 on PostgreSQL 8.2.5 and MySQL 5.0.45 [Jena, 2013]; 

― Sesame 2.0 [Sesame, 2012], 

tested by Berlin SPARQL Bench Mark (BSBM) team and connected to it research groups 

[Becker, 2008; BSBMv2, 2008; BSBMv3, 2009]. More information about latest versions of these 

systems is given in Appendix B. 

We will provide experiments with middle-size RDF-datasets, based on selected real datasets 

from DBpedia [DBpedia, 2007a; DBpedia, 2007b] and artificial datasets created by BSBM Data 

Generator [BSBM DG, 2013; Bizer & Schultz, 2009]. 

 

The real middle-size RDF-datasets which we will use consist of DBpedia's homepages and 

geocoordinates datasets with minor corrections [Becker, 2008]: 

― Homepages-fixed.nt (200,036 triples; 24 MB) Based on DBpedia's homepages.nt dated 

2007-08-30 [DBpedia, 2007a]. 3 URLs that included line breaks were manually 

corrected (fixed for DBpedia 3.0); 

― Geocoordinates-fixed.nt (447,517 triples; 64 MB) Based on DBpedia's geocoordinates.nt 

dated 2007-08-30 [DBpedia, 2007b]. Decimal data type URI was corrected (DBpedia 

bug #1817019; resolved); 

 

The RDF stores feature different indexing behaviors: Sesame automatically indexes after 

each import, while SDB and Virtuoso allow for selective index activation which caouse corresponded 

limitations or advantages. In order to make load times comparable, the data import by [Becker, 2008] 

was performed as follows: 

― Homepages-fixed.nt was imported with indexes enabled; 

― Geocoordinates-fixed.nt was imported with indexes enabled. 

In the case with RDFArM no parameters are needed. The data sets were loaded directly from 

the source N-triple files. 

 

The artificial middle-size RDF-datasets are generated by BSBM Data Generator [BSBM 

DG, 2013] and published in N-triple as well as in Turtle format [BSBMv1, 2008; BSBMv2, 2008; 

BSBMv3, 2009]. We converted Turtle format in N-triple format using “rdf2rdf” program developed 

by Enrico Minack [Minack, 2010]. 

 

We have use four BSBM datasets – 50K, 250K, 1M, and 5M. Details about these datasets 

are summarized in following Table 39. 
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Table 39. Details about used artificial middle-size RDF-datasets 

Name of RDF-dataset: 50K 250K 1M 5M 

Exact Total Number of Triples: 50,116 250,030 1,000,313 5,000,453 

Number of Products 91 666 2,785 9,609 

Number of Producers 2 14 60 199 

Number of Product Features 580 2,860 4,745 3,307 

Number of Product Types 13 55 151 73 

Number of Vendors 2 8 34 196 

Number of Offers 1,820 13,320 55,700 192,180 

Number of Reviewers  116 339 1432 12,351 

Number of Reviews 2,275 6,660 27,850 240,225 

Total Number of Instances  4,899 23,922 92,757 458,140  

File Size Turtle (unzipped)  14 MB 22 MB 86 MB 1,4 GB 

 

 Loading of BSBM 50K 

RDFArM has loaded all 50116 triples from BSBM 50K for about 113 seconds (112851 ms) 

or average time of 2.3 ms per triple (Figure 52). 

Number of Subjects in this dataset was S=4900; number of relations R=40; and number of 

objects O=50116. 

This means that practically we had 40 layers with 4900 NL-locations (containers) which 

contain 50116 objects. The loading time’ results from our experiment and [Bizer & Schultz, 2008] are 

given in Table 40 and shown on Figure 53. 

Benchmark configuration used by [Bizer&Schultz, 2008] is Configuration B. 

Our benchmark configuration is Configuration K. 

The loading times proportionality formula is 

L(RDFArM,B,S2) = L(RDFArM,K,S2) * RRDFArM,K,B, and RRDFArM,K,B = 0.025729; 

and we compute final loading time as follow: 113 * 0.025729= 2.91 sec. 
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Figure 52. Screenshot of the report of RDFArM for BSBM 50K 

Table 40. Benchmark results for BSBM 50K 

system loading time in seconds

Sesame 3 

Jena SDB 5 

Virtuoso 2 

RDFArM 3 

 

 

Figure 53. Benchmark results for BSBM 50K 

From Table 40 and Figure 53 we may conclude that for BSBM 50K Virtuoso has the best 

time, RDFArM has same loading time as Sesame and 40% better performance than Jena. 
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 Loading of homepages-fixed.nt 

RDFArM has loaded all 200036 triples from homepages-fixed.nt for about 727 seconds 

(727339 ms) or average time of 3.6 ms per triple (Figure 54). 

 

 

Figure 54. Screenshot of the report of RDFArM for homepages-fixed.nt 

 

More detailed information is given in Table 41. Every row of this table contains data for 

storing of one hundred thousand triples. Total stored triples were 200036 and Table 41 contains three 

rows. 

Table 41. RDFArM results for homepages-fixed.nt 

part triples 

stored 

ms 

for all 

ms 

for one 
Subjects Relations Objects 

1 100000 360955 3.6 100000 1 100000

2 100000 366275 3.7 100000 1 100000

3 36 109 3.0 36 1 36

Total: 200036 727339 3.6 200036 1 200036

 

Number of Subjects in this dataset was S=200036; number of relations R=1; and number of 

objects O=200036. 

This means that practically we had only one layer with 200036 NL-locations (containers) 

which contain the same number of objects. The loading time’ results from our experiment and 

[Becker, 2008] are given in Table 42 and Figure 55. 

Benchmark configuration used by [Becker, 2008] is Configuration A. 

Our benchmark configuration is Configuration K. 
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The loading times proportionality formula is 

L(RDFArM,A,S2) = HAK*L(RDFArM,K,S2), where HAK =3.125; 

and we compute final loading time as follow: 727 x 3.125 = 2271.875 sec. 

 

Table 42. Benchmark results for homepages-fixed.nt 

system loading time in seconds 

Virtuoso (ogps, pogs, psog, sopg) 1327 

Jena SDB MySQL Layout 2 Index 5245 

Jena SDB Postgre SQL Layout 2 Index 3557 

Jena SDB Postgre SQL Layout 2 Hash 9681 

Sesame Native (spoc, posc) 2404 

RDFArM 2272 

 

 

 

Figure 55. Benchmark results for homepages-fixed.nt 

 

From Table 42 we may conclude that Virtuoso has the best time (about 42% better result 

than RDFArM); RDFArM has about 5% better time than Sesame and 36% better time than Jena (we 

take in account only the best results of compared systems, in this case – Jena). 
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 Loading of BSBM 250K 

RDFArM has loaded all 250030 triples from BSBM 250K for about 575 seconds (575069 

ms) or average time of 2.3 ms per triple (Figure 56). 

More detailed information is given in Table 43. Every row of this table contains data for 

storing of one hundred thousand triples. Total stored triples were 250030 and Table 43 contains three 

rows. 

 

 

Figure 56. Screenshot of the report of RDFArM for BSBM 250K 

 

Table 43. RDFArM results for BSBM 250K 

part triples 

stored 

ms 

for all 

ms 

for one 
Subjects Relations Objects 

1 100000 238525 2.4 19854 6 100000

2 100000 228854 2.3 26505 22 100000

3 50030 107690 2.1 14525 22 50030

Total: 250030 575069 2.3 60884 22 250030

 

Number of Subjects in this dataset was S=60884; number of relations R=22; and number of 

objects O=250030. 

This means that practically we had 22 layers with 60884 NL-locations (containers) which 

contain 250030 objects. The loading time’ results from our experiment and [BSBMv2, 2008] are given 

in Table 44 and shown on Figure 57. 
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Benchmark configuration used by [BSBMv2, 2008] is Configuration B. 

Our benchmark configuration is Configuration K. 

The loading times proportionality formula is 

L(RDFArM,B,S2) = L(RDFArM,K,S2) * RRDFArM,K,B, and RRDFArM,K,B = 0.025729; 

and we compute final loading time as follow: 575 x 0.025729= 14.79 sec. 

Table 44. Benchmark results for BSBM 250K 

system loading time in seconds

Sesame 19 

Jena TDB  13 

Virtuoso TS  05 

Virtuoso RDF views 09 

Virtuoso SQL  09 

RDFArM 14.79 

 

 

 

Figure 57. Benchmark results for BSBM 250K 

 

From Table 44 and Figure 57 we may conclude that Virtuoso has 66% and Jena has 12% 

better performance than RDFArM. RDFArM has 22% better performance than Sesame. 
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 Loading of geocoordinates-fixed.nt 

RDFArM has loaded all 447517 triples from geocoordinates-fixed.nt for about 1110 seconds 

(1110415 ms) or average time of 2.5 ms per triple (Figure 58). 

More detailed information is given in Table 45. Every row of this table contains data for 

storing of one hundred thousand triples. Total stored triples were 447517 and Table 45 contains five 

rows. 

 

 

Figure 58. Screenshot of the report of RDFArM for 

geocoordinates-fixed.nt 

 

Table 45. RDFArM results for geocoordinates-fixed.nt 

part triples 
stored 

ms 
for all 

ms 
for one 

Subjects Relations Objects 

1 100000 244453 2.4 34430 6 100000

2 100000 246747 2.5 34909 6 100000

3 100000 245530 2.5 33863 6 100000

4 100000 248198 2.5 33678 6 100000

5 47517 47517 2.6 16095 6 47517

Total: 447517 1110415 2.5 152975 6 447517 

 

Number of Subjects in this dataset was S=152975; number of relations R=6; and number of 

objects O=447517. 
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This means that practically we had six layers with 152975 NL-locations (containers) which 

contain 447517 objects, i.e. some containers in some layers are empty. The loading time’ results from 

our experiment and [Becker, 2008] are given in Table 46 and Figure 59. 

Benchmark configuration used by [Becker, 2008] is Configuration A. 

Our benchmark configuration is Configuration K. 

The loading times proportionality formula is 
L(RDFArM,A,S2) = HAK*L(RDFArM,K,S2), where HAK =3.125; 

and we compute final loading time as follow: 1110 x 3.125= 3468.75 sec. 

Table 46. Benchmark results for geocoordinates-fixed.nt 

system loading time in seconds 

Virtuoso (ogps, pogs, psog, sopg) 1235 

Jena SDB MySQL Layout 2 Index 6290 

Jena SDB Postgre SQL Layout 2 Index 3305 

Jena SDB Postgre SQL Layout 2 Hash 9640 

Sesame Native (spoc, posc) 2341 

RDFArM 3469 

 

 

Figure 59. Benchmark results for geocoordinates-fixed.nt 

 

From Table 46 and Figure 59 we may conclude that RDFArM has the worst performance 

(we take the best time of Jena). Virtuoso has 64%, Sesame has 33%, and Jena has 5% better 

performance. 
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 Loading of BSBM 1M 

RDFArM has loaded all 1000313 triples from BSBM 1M for about 2349 seconds (2349328 

ms) or average time of 2.3 ms per triple (Figure 60). 

 

 

Figure 60. Screenshot of the report of RDFArM for BSBM 1M 

 

More detailed information is given in Table 47. Every row of this table contains data for 

storing of one hundred thousand triples. Total stored triples were 1000313 and Table 47 contains 11 

rows. This table has new structure. It contains number of stored triples to corresponded part including 

it and in separate columns the time for storing the last 100000 triples and average time for one triple 

from this part. 

 

Table 47. RDFArM results for BSBM 1M 

part triples 
stored 

ms for all ms for one ms for 
last 

100000

ms for one Subjects Relations Objects 

1 100000 241099 2.4 241099 2.4 6859 22 100000

2 200000 480265 2.4 239166 2.4 14363 29 200000

3 300000 714453 2.4 234188 2.3 24365 29 300000

4 400000 962994 2.4 248541 2.5 34366 29 400000

5 500000 1194344 2.4 231350 2.3 44368 29 500000

6 600000 1423665 2.4 229321 2.3 54370 29 600000
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part triples 
stored 

ms for all ms for one ms for 
last 

100000

ms for one Subjects Relations Objects 

7 700000 1655420 2.4 231755 2.3 64324 40 700000

8 800000 1892074 2.4 236654 2.4 73799 40 800000

9 900000 2116590 2.4 224516 2.2 83269 40 900000

10 1000000 2348501 2.3 231911 2.3 92729 40 1000000

11 1000313 2349328 2.3 827 2.6 92757 40 1000313

 

Number of Subjects in this dataset was S=92757; number of relations R=40; and number of 

objects O=1000313. 

This means that practically we had 40 layers with 92757 NL-locations (containers) which 

contain 1000313 objects. The loading time’ results from our experiment and [BSBMv2, 2008; 

BSBMv3, 2009] are given in Table 48 and shown on Figure 61. 

Benchmark configuration used by [BSBMv2, 2008; BSBMv3, 2009] is Configuration B. 

Our benchmark configuration is Configuration K. 

The loading times proportionality formula is 

L(RDFArM,B,S2) = L(RDFArM,K,S2) * RRDFArM,K,B, and RRDFArM,K,B = 0.025729; 

and we compute final loading time as follow: 2349 x 0.025729 = 60.437421 sec. 

Table 48. Benchmark results for BSBM 1M 

system 

loading time in min:sec 

(a) 

[BSBMv2, 2008]

(b) 

[BSBMv3, 2009]

Sesame 02:59 03:33 

Jena TDB 00:49 00:41 

Jena SDB 02:09 - 

Virtuoso TS 00:23 00:25 

Virtuoso RV 00:34 00:33 

Virtuoso SQL 00:34 00:33 

RDFArM 01:00 01:00 
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Figure 61. Benchmark results for BSBM 1M 

 

From Table 48 and Figure 61 we may conclude that Virtuoso has 62% and Jena has 32% 

better performance than RDFArM. RDFArM has 67% better performance than Sesame. 

 

 Loading of BSBM 5M 

RDFArM has loaded all 5000453 triples from BSBM 5M for about 11704 sec. (11704116 

ms) or average time of 2.3 ms per triple (Figure 62). 

 

 

Figure 62. Screenshot of the report of RDFArM for BSBM 5M 

 

Number of Subjects in this dataset was S=458142; number of relations R=55; and number of 

objects O=5000453. 
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This means that practically we had 55 layers with 458142 NL-locations (containers) which 

contain 5000453 objects. The loading time’ results from our experiment and [Bizer & Schultz, 2008] 

are given in Table 50 and shown on Figure 63. 

More detailed information is given in Table 49. Every row of this table contains data for 

storing of one hundred thousand triples. Total stored triples were 5000453 and Table 49 contains 51 

rows. 

This table contains number of stored triples to corresponded part including it and in separate 

columns the time for storing the last 100000 triples and average time for one triple from this part. 

Table 49. RDFArM results for BSBM 5M 

part triples 
stored 

ms for all 
ms 
for 
one 

ms for last 
100000 

ms 
for 
one 

Subjects Relations Objects 

1 100000 250023 2.5 250023 2.5 5463 22 100000 

2 200000 506660 2.5 256637 2.6 7973 22 200000 

3 300000 751254 2.5 244594 2.4 10471 22 300000 

4 400000 983196 2.5 231942 2.3 12974 22 400000 

5 500000 1227104 2.5 243908 2.4 22353 29 500000 

6 600000 1468063 2.4 240959 2.4 32357 29 600000 

7 700000 1708663 2.4 240600 2.4 42360 29 700000 

8 800000 1956034 2.4 247371 2.5 52363 29 800000 

9 900000 2190644 2.4 234610 2.3 62366 29 900000 

10 1000000 2430043 2.4 239399 2.4 72369 29 1000000 

11 1100000 2666041 2.4 235998 2.4 82372 29 1100000 

12 1200000 2910230 2.4 244189 2.4 92375 29 1200000 

13 1300000 3143529 2.4 233299 2.3 102377 29 1300000 

14 1400000 3371618 2.4 228089 2.3 112381 29 1400000 

15 1500000 3605136 2.4 233518 2.3 122384 29 1500000 

16 1600000 3838139 2.4 233003 2.3 132387 29 1600000 

17 1700000 4070830 2.4 232691 2.3 142390 29 1700000 

18 1800000 4298155 2.4 227325 2.3 152393 29 1800000 
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19 1900000 4527367 2.4 229212 2.3 162396 29 1900000 

20 2000000 4758030 2.4 230663 2.3 172399 29 2000000 

21 2100000 4985698 2.4 227668 2.3 182402 29 2100000 

22 2200000 5212742 2.4 227044 2.3 192405 29 2200000 

23 2300000 5439692 2.4 226950 2.3 202408 29 2300000 

24 2400000 5685347 2.4 245655 2.5 212043 40 2400000 

25 2500000 5922328 2.4 236981 2.4 221512 40 2500000 

26 2600000 6155331 2.4 233003 2.3 230972 40 2600000 

27 2700000 6391610 2.4 236279 2.4 240447 40 2700000 

28 2800000 6630417 2.4 238807 2.4 249912 40 2800000 

29 2900000 6855511 2.4 225094 2.3 259371 40 2900000 

30 3000000 7078545 2.4 223034 2.2 268831 40 3000000 

31 3100000 7305979 2.4 227434 2.3 278290 40 3100000 

32 3200000 7533928 2.4 227949 2.3 287754 40 3200000 

33 3300000 7773608 2.4 239680 2.4 297240 40 3300000 

34 3400000 8006782 2.4 233174 2.3 306704 40 3400000 

35 3500000 8239629 2.4 232847 2.3 316145 40 3500000 

36 3600000 8464536 2.4 224907 2.2 325609 40 3600000 

37 3700000 8693202 2.3 228666 2.3 335077 40 3700000 

38 3800000 8919248 2.3 226046 2.3 344557 40 3800000 

39 3900000 9150254 2.3 231006 2.3 354009 40 3900000 

40 4000000 9383912 2.3 233658 2.3 363472 40 4000000 

41 4100000 9616120 2.3 232208 2.3 372924 40 4100000 

42 4200000 9850090 2.3 233970 2.3 382383 40 4200000 

43 4300000 10073842 2.3 223752 2.2 391847 40 4300000 

44 4400000 10305832 2.3 231990 2.3 401308 40 4400000 

45 4500000 10536619 2.3 230787 2.3 410763 40 4500000 

46 4600000 10769997 2.3 233378 2.3 420233 40 4600000 

47 4700000 11004030 2.3 234033 2.3 429699 40 4700000 
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48 4800000 11242836 2.3 238806 2.4 439169 40 4800000 

49 4900000 11474107 2.3 231271 2.3 448643 40 4900000 

50 5000000 11702852 2.3 228745 2.3 458099 40 5000000 

51 5000453 11704116 2.3 1264 2.8 458142 55 5000453 

 

Benchmark configuration used by [Bizer & Schultz, 2008] is Configuration B. 

Our benchmark configuration is Configuration K. 

The loading times proportionality formula is 

L(RDFArM,B,S2) = L(RDFArM,K,S2) * RRDFArM,K,B, and RRDFArM,K,B = 0.025729; 

and we compute final loading time as follow: 11704 * 0.025729= 301.13 sec. 

Table 50. Benchmark results for BSBM 5M 

system loading time in seconds

Sesame 1988 

Jena SDB 1053 

Virtuoso 609 

RDFArM 301 

 

 

Figure 63. Benchmark results for BSBM 5M 

 

From Table 50 and Figure 63 we may conclude that RDFArM has best loading time (better 

about 85% than Sesame, 71% than Jena, and 51% than Virtuoso). 
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6.5 Experiments with large datasets 

We provided experiments with real large datasets which were taken from DBpedia's 

homepages [DBpedia, 2007c] and Billion Triple Challenge (BTC) 2012 [BTC, 2012]. 

The real dataset from DBpedia's infoboxes-fixed.nt (15,472,624 triples; 2.1 GB) is based on 

DBpedia's infoboxes.nt dated 2007-08-30 [DBpedia, 2007c]. 166 triples from the original set were 

excluded because they contained excessively large URIs (> 500 characters) that caused importing 

problems with Virtuoso (DBpedia bug #1871653). RDFArM has no such limitation. Infoboxes-

fixed.nt was imported with indexes initially disabled in SDB and Virtuoso. Indexes were then 

activated and the time required for index creation time was factored into the import time. In the case 

with RDFArM no parameters are needed. The datasets were loaded directly from the source file. 

The RDF Stores, tested by [Becker, 2008], are: 

― OpenLink Virtuoso Open-Source Edition 5.0.2 [Virtuoso, 2013]; 

― Jena SDB Beta 1 on PostgreSQL 8.2.5 and MySQL 5.0.45 [Jena, 2013]; 

― Sesame 2.0 beta 6 [Sesame, 2012]. 

The RDF stores feature different indexing behaviors: Sesame automatically indexes after 

each import, while SDB and Virtuoso allow for selective index activation. More information about 

latest versions of these systems is given in Appendix B. 

Artificial large datasets are taken from Berlin SPARQL Bench Mark (BSBM) [Bizer & 

Schultz, 2009; BSBMv3, 2009; BSBMv5, 2009; BSBMv6, 2011]. Details about the benchmark 

artificial datasets are summarized in the following Table 51: 

Table 51. Details about artificial large RDF-datasets 

Number of Triples 25M 100M 

Exact Total Number of Triples 25000244 100000112

Number of Products 70812 284826

Number of Producers 1422 5618

Number of Product Features 23833 47884

Number of Product Types 731 2011

Number of Vendors 722 2854

Number of Offers 1416240 5696520

Number of Reviewers  36249 146054

Number of Reviews 708120 2848260

Total Number of Instances  2258129 9034027

File Size Turtle (unzipped)  2.1 GB 8.5 GB
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 Loading of infoboxes-fixed.nt 

RDFArM has loaded all 15 472 624 triples from infoboxes-fixed.nt for about 43652 seconds 

(43652528 ms) or average time of 2.8 ms per triple (Figure 64). 
 

 

Figure 64. Screenshot of the report of RDFArM for infoboxes-fixed.nt 
 

More detailed information is given in Table 70 in Appendix A4. Every row of this table 

contains data for storing of one hundred thousand triples. Total stored triples were 15,472,624 and 

Table 70 contains 155 rows. 

Number of Subjects in this dataset was S=1354298; number of relations R=56338; and 

number of objects O=15472624. 

This means that practically we had 56338 layers with 1354298 NL-locations (containers) 

which contain 15472624 objects, i.e. some containers in some layers are empty. The loading time’ 

results from our experiment and [Becker, 2008] are given in Table 52 and Figure 65. 

Benchmark configuration used by [Becker, 2008] is Configuration A. 

Our benchmark configuration is Configuration K. 

The loading times proportionality formula is  
L(RDFArM,A,S2) = HAK*L(RDFArM,K,S2), where HAK =3.125;  

and we compute final loading time as follow:  43652 x 3.125= 136412.5 sec. 

Table 52. Benchmark results for infoboxes-fixed.nt 

system loading time in seconds 

Virtuoso (ogps, pogs, psog, sopg) 7017 

Jena SDB MySQL Layout 2 Index 70851 

Jena SDB Postgre SQL Layout 2 Index 73199 

Jena SDB Postgre SQL Layout 2 Hash 734285 

Sesame Native (spoc, posc) 21896 

RDFArM 136412 
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Figure 65. Benchmark results for infoboxes-fixed.nt 

 

From Table 52 and Figure 65 we may conclude that RDFArM has the worst loading time. 

Virtuoso is 95%, Sesame is 84%, and Jena is 48% better than RDFArM (we take in account only the 

best results of compared systems). 

 

For large datasets it is very important to support multi-processors’ parallel loading of data. 

RDFArM is developed to support such work. We simulate four processors’ configuration by 

separating dataset on portions of 5 million triples and loading them separately (Table 70). 

Table 53 presents final times for different processors. 

 

Table 53. Benchmark results for multiprocessor loading of infoboxes-fixed.nt 

processor number triples stored ms for storing 
all triples 

ms for storing 
one triple 

0 5000000 13394043 2.7 

1 5000000 15054986 3.01 

2 5000000 14182083 2.8 

3 472624 1021416 2.2 

 

As total loading time we assume the largest processor’s one, i.e. 15054.986 sec. 
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 Loading of BSBM 25M 

RDFArM has loaded all 25000244 triples from BSBM 25M for about 56488 seconds 

(56488509ms) or average time of 2.3 ms per triple (Figure 66). 
 

 

Figure 66. Screenshot of the report of RDFArM for BSBM 25M 

 

Number of Subjects in this dataset was S=2258132; number of relations R=112; and number 

of objects O=25000244. 

This means that practically we had 112 layers with 2258132 NL-locations (containers) which 

contain 25000244 objects, i.e. some containers in some layers are empty.  

The loading time’ results from our experiment and [Bizer & Schultz, 2009; BSBMv3, 2009] 

are given in Table 54 and Figure 67. 

Benchmark configuration used by [Bizer & Schultz, 2009; BSBMv3, 2009] is 

Configuration B. Our benchmark configuration is Configuration K. 

The loading times proportionality formula is 

L(RDFArM,B,S2) = L(RDFArM,K,S2) * RRDFArM,K,B, and RRDFArM,K,B = 0.025729. 

We compute final loading time as follow: 56488*0.025729= 1453.38 sec. 

Table 54. Benchmark results for BSBM 25M 

system loading time in seconds

Sesame 44225 

Jena TDB 1013 

Jena SDB 14678 

Virtuoso TS 2364 

Virtuoso RV 1035 

Virtuoso SQL 1035 

RDFArM 1453 
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Figure 67. Benchmark results for BSBM 25M 

 

From Table 54 and Figure 67 we may conclude that Jena (with 30%) and Virtuoso (with 

29%) are better than RDFArM. RDFArM has 97% better performance than Sesame. 

We simulate multi-processors’ configuration by separating dataset on portions of 5 million 

triples and loading them separately. Table 55 presents final times for different processors. 

Table 55. Benchmark results for multiprocessors’ loading of BSBM 25M 

processor number triples stored 
ms for storing 

all triples 
ms for storing 

one triple 

0 5000000 11353862 2.3 

1 5000000 11570875 2.3 

2 5000000 11529651 2.3 

3 5000000 11107771 2.2 

4 5000000 10925646 2.2 

5 244 704 2.9 
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 Loading of BSBM 100M and BSBM 200M 

RDFArM has loaded all 100000112 triples from BSBM 100M for about 229344 seconds 

(229343807 ms) or average time of 2.3 ms per triple (Figure 68). 

 

Figure 68. Screenshot of the report of RDFArM for BSBM 100M 

 

Number of Subjects in this dataset was S=9034046; number of relations R=341; and number 

of objects O=100000112. 

This means that practically we had 341 layers with 9034046 NL-locations (containers) which 

contain 100000112 objects, i.e. some containers in some layers contain more than one object. The 

loading time’ results from our experiment and [Bizer & Schultz, 2009; BSBMv3, 2009] are given in 

Table 56 and Figure 69. 

Benchmark configuration used by [Bizer & Schultz, 2009; BSBMv3, 2009] is 

Configuration B. Our benchmark configuration is Configuration K. 

The loading times proportionality formula is 

L(RDFArM,B,S2) = L(RDFArM,K,S2) * RRDFArM,K,B, and RRDFArM,K,B = 0.025729. 

We compute final loading time as follow: 

229344 * 0.025729 = 5900.79 sec. 

Table 56. Benchmark results for BSBM 100M 

system loading time in seconds 

Sesame 282455 

Jena TDB 5654 

Jena SDB 139988 

Virtuoso TS 28607 

Virtuoso RV 3833 

Virtuoso SQL 3833 

RDFArM 5901 
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Figure 69. Benchmark results for BSBM 100M 

From Table 56 and Figure 69 we may conclude that Virtuoso is 35% better than RDFArM 

and Jena is 4% better than RDFArM. RDFArM is 98% better than Sesame. 

In [BSBMv6, 2011] results received from benchmarks on computer configuration C are 

published. The N-Triples version of the dataset was used. For Virtuoso, the dataset was split into 100 

respectively 200 Turtle files and loaded with the DB.DBA.TTLP function consecutively.  

Benchmark configuration used by [BSBMv6, 2011] is Configuration C. 

Our benchmark configuration is Configuration K. 

The loading times proportionality formula for Configuration C is 

L(RDFArM,C,S2) = L(RDFArM,K,S2) * RRDFArM,K,C and RRDFArM,K,C = 0.068639. 

We compute RDFArM final loading time for BSBM 100M as follow: 

229344 * 0.068639 = 15741.94 sec. 

We compute RDFArM final loading time for BSBM 200M as follow: 

2 * 229344 * 0.068639 = 31483.88 sec. 

The loading time’ results from our experiment and [BSBMv6, 2011] are given in Table 57 

and Figure 70. 

Table 57. Benchmark results for BSBM 100M and 200M on Configuration C 

system 
loading time in seconds 

100M 200M 

Jena TDB 4488 9913 

Virtuoso 6566 14378 

RDFArM 15742 31484 
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Figure 70. Benchmark results for BSBM 100M and 200M on Configuration C 

We have no benchmarks for Sesame. Because of this experiment will not be used for the 

analysis. From Table 57 and Figure 70 we may conclude that RDFArM has to be improved for big 

datasets to be comparable to Virtuoso and Jena. This is done in its multi-processors’ version 

RDFArM-MP. 

We simulate multi-processors’ configuration by separating dataset on portions of 5 million 

triples and loading them separately. Table 58 presents final times for different processors. 

Table 58. Benchmark results for multiprocessors’ loading of BSBM 100M 

processor number triples stored ms for storing 
all triples 

ms for storing 
one triple 

0 5000000 11271727 2.3 

1 5000000 11251369 2.3 

2 5000000 11514715 2.3 

3 5000000 11318091 2.3 

4 5000000 11484496 2.3 

5 5000000 11571904 2.3 

6 5000000 11524854 2.3 

7 5000000 11541593 2.3 

8 5000000 11547395 2.3 

9 5000000 11582902 2.3 

10 5000000 11508093 2.3 

11 5000000 11461596 2.3 
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12 5000000 11588535 2.3 

13 5000000 11597551 2.3 

14 5000000 11565899 2.3 

15 5000000 11367450 2.3 

16 5000000 11379821 2.3 

17 5000000 11337077 2.3 

18 5000000 11420647 2.3 

19 5000000 11507826 2.3 

20 112 266 2.4 

 

As total loading time of multi-processors’ configuration we assume the largest processor’s 

time, i.e. 11597.551 sec.  

We compute final loading time as follow: 11597.551 * 0.068639 = 796.04 sec. 

 Conclusion of chapter 6 

We have presented results from series of experiments which were needed to estimate the 

storing time of NL-addressing for middle-size and very large RDF-datasets. 

We described the experimental storing models and special algorithm for NL-storing RDF 

instances. Estimation of experimental systems was provided to make different configurations 

comparable. Special proportionality constants for hardware and software were proposed. Using 

proportionality constants, experiments with middle-size and large datasets become comparable. 

Experiments were provided with both real and artificial datasets. Experimental results were 

systematized in corresponded tables. For easy reading visualization by histograms was given. 

Experimental results will be analyzed in the next chapter. 

The goal experiments for NL-storing of middle-size and large RDF-datasets were to estimate 

possible further development of NL-ArM. We assumed that its “software growth” will be done in the 

same grade as one of the known systems like Virtuoso, Jena, and Sesame. In the next chapter we will 

analyze what will be the place of NL-ArM in this environment but already we may see that NL-

addressing have good performance and NL-ArM has similar results as Jena and Sesame. 

 

 




