
Natural Language Addressing

95

4 Basic experiments

Abstract

In this chapter we will present two types “clear” experiments: with a text file and a

relational database. The reason is that they are wide used for storing semi-structured data.

4.1 Comparison with a text file

The need to compare NL-ArM access method with text files is determined by practical

considerations – in many applications the text files are main approach for storing semi-structured data.

Text files are kind of files of records which are still in the basis of modern database management

systems. Because of this, it is important to determine whether there exists a benefit of structuring data

in tries. For instance, if the records are connected to keywords (strings), the information may be

recorded by burst tries (i.e. by NL-addressing) rather than as usually with a clear indication of the

keywords in the records.

Important consideration in this case is that the sequential reading text file (to find concrete

keyword) is very slow operation and every indexed approach will be quicker. Indexed text files are

typical for relational data bases and this case will be analyzed further in this chapter.

Here, the goal is to investigate the size of the files and speed of their generation. In other

words, we have to compare writing in a sequential text file with writing in NL-ArM archive.

To compare so different file structures we need to use a common record structure. The

structure of text file is a record identified by a keyword, i.e.

<keyword><text information><CR>.

In ArM32 and, respectively, in NL-ArM archives, the information is structured in multi-way

multi-layer hash structures and the content of record may be accessed by keyword as path to location

of container where the text is stored, i.e.

<path>  <text>.

In this case the keyword (path) is not stored on the disk.

In both cases the <text> is the same.

We have to make choice for length of the keywords. It may be arbitrary but with fixed

length.

Basic experiments

96

Our choice for keywords’ length is based on understanding that the average word length in

English is approximately 5.10 characters [Sigurd et al, 2004]. In other words, the most frequently

used English words are up to 8 characters long (Figure 23).

Figure 23. Word Length for English (extracted from [Sigurd et al, 2004])

The average word length in French is approximately 5.13 characters, in Spanish - 5.22

characters, in German - 6.26 characters [Sigurd et al, 2004], in Russian – 5.28 characters

[Sharoff, 2001]. This means that length of 8 characters cover these languages, too.

Following this consideration, we chose 8 characters as length of the keywords in our

experiments.

The basis of the experiments is a structure of 30 symbols:

 Keyword – artificial arbitrary string with maximal length of 8 ASCII symbols.

Duplication of symbols is permitted;

 String of 22 arbitrary ASCII symbols,

which are stored (written) as follow:

 In the text file – as a structure consisting of keyword and string of length 30 bytes;

 In the NL-ArM archive - the same string (22 characters) stored in the elements with the

specified by path of 8 characters (four ASCII symbols in one co-ordinate), i.e. in the

archive will be written 22 bytes of the string and 8 symbols of the keyword will be

assumed as path (NL-address).

For the experiments, the NL-ArM hash function was programmed to convert ASCII string to

space path, i.e. four symbols to form one 32 bit co-ordinate word. The generated keyword string was

extended with leading zeroes if it is needed. This way the 8 byte string keyword is converted in two 32

bit hash values and we have to use two layer hash structure. For instance, the string “ABCDEFGH”

will be converted in two 32 bit words (ACBD) and (EFGH) where every letter’s ASCII code occupies

one byte.

Natural Language Addressing

97

The experiments follow the ones made in [Markov, 2006] and were provided on the same

computer with a processor Celeron, 3.08 GHz, 512 MB RAM 160 GB HDD and operating system

Microsoft Windows XP Professional Ver. 2002, Service Pack 2. The results of the experiments are

given in Table 12, Table 13, Table 14, and Table 15. Corresponded graphic visualizations are given at

Figure 24, Figure 25, Figure 26, and Figure 27. We received the same results as in [Markov, 2006]

which means that the NL-addressing do not add significant complexity to one of the ArM32.

 Comparison of time characteristics

The Table 12 contains information about six experiments provided with different quantity of

records from 2500 up to 100 millions. The table contains data in milliseconds (ms) about time for

storing all data sets as well as the average time for storing of one record. The Figure 24 illustrates

graphically the same data.

Table 12. Time (ms) for writing in text file and NL-ArM archive

writing in: text file (ms) in NL-ArM-archive (ms)

number of records all data one record all data one record

2500 16 0.006400 47 0.018800

10000 62 0.006200 140 0.014000

250000 1625 0.006500 3328 0.013312

1000000 6703 0.006703 13359 0.013359

25000000 128719 0.005149 323407 0.012936

100000000 524281 0.005243 1314562 0.013146

Figure 24. Time in milliseconds for writing in text file and NL-ArM archive

Basic experiments

98

The conclusion is that the time of storing the information has expectable regularities: for

great number of elements, writing in a NL-ArM archive became almost twice and half slower than

writing in a text file. It is because of building the hash tables of the information in the NL-ArM

archive.

Table 13 represents the time correlation between writing in text file and in NL-ArM archive.

This correlation is illustrated on Figure 25.

Table 13. Time correlation for writing in text file and NL-ArM archive

number of records text file NL-archive

2500 1 2.94

10000 1 2.26

250000 1 2.05

1000000 1 1.99

25000000 1 2.51

100000000 1 2.51

Figure 25. Time correlation between text file and NL-ArM for writing

It is important that the NL-ArM is constantly about two and half times slower. This means

that the including new records in NL-ArM archive take the same time (about 0.013 ms) per record

irrespective of the number of already stored records. For building very large data bases this is very

crucial characteristic.

Natural Language Addressing

99

The speed of NL-ArM during storing the first 2500 – 5000 records is about three times

slower. This is due to initial creating empty hash tables (information spaces) which takes additional

time. This is illustrated on Figure 25 where in the beginning (most left part) of red curve there exists

specific irregularity.

 Comparison of size characteristics

The comparison of file sizes shows that for great number of elements the text file became a

little longer than NL-ArM archive. Adding indexes for speeding search in text file will increase the

occupied memory because of:

 Duplicating the keywords in the index structures;

 Adding pointers to the records of the text file.

In the same time, after every writing operation, the NL-ArM archive is readies for immediate

direct access (by arbitrary keywords) without need of additional indexing and duplication the

keywords, which “annihilate” transmuting into paths (NL-addresses).

Table 14 contains data for sizes (in bytes) of the text file and the NL-ArM archive. The

corresponded graphical visualization is shown on Figure 26.

The first column of Table 14 contains the number of records. The next two columns contain

the size of the text file and the NL-ArM archive after storing the corresponded numbers of records, i.e.

2 500 records occupy 75 000 bytes in the text file and 130 048 bytes in NL-ArM archive.

It is important that in this case (8 bytes keywords) the NL-ArM takes about 5.5 bytes

additional memory for every record to support hash tables’ organization.

In other words, if we take the value of the size NL-ArM archive from the last row of the

Table 14 (2 740 055 552 bytes) and subtract from it the real length of the stored 100 000 000 records

of 22 bytes (2 200 000 000), we will receive the size of internal NL-ArM additional memory for hash

indexes, which in this case is 540 055 552 bytes.

Now, dividing it on the number of records, i.e. 540055552/100000000 we receive the

average of additional hash indexing memory for each record, i.e. 5.40055552 bytes.

Assuming this value as 5.5 bytes we may say that file with keywords longer than 6 bytes up

to 8 bytes each will be stored by NL-ArM in a file with smallest size.

The same result is illustrated on the Figure 26 where the line of the size of the NL-ArM

archive is under the line of the size of the corresponded text file (of records).

In the same time we receive one very important quality: NL-ArM archive permits random

direct access to all stored records immediately after writing it without any additional indexing.

In experiments with text file we used artificially generated strings up to 8 symbols. If we use

real English words, at the first glance, it will be more effective to use text file for storing couples

(English word, definition), for instance, from a dictionary. If we want only to store the information,

this conclusion is correct.

Basic experiments

100

But if we want to use it via random read and/or update, we have to build indexes for quick

access to the records which will duplicate the keywords and in addition will contain pointers to

locations of keywords and definitions in the file. The external indexing structures used in modern

databases need additional memory as well as time for realizing the same functionality. NL-ArM

avoids such indexes.

Table 14. Size in bytes of the text file and the NL-ArM archive

number of records text file NL-ArM-archive

2 500 75 000 130 048

10 000 300 000 360 448

250 000 7 500 000 6 659 072

1 000 000 30 000 000 26 116 608

25 000 000 750 000 000 640 016 896

100 000 000 3 000 000 000 2 740 055 552

Figure 26. Size in bytes of the text file and the NL-ArM archive

Table 15 represents the relation between sizes of the text file and NL-ArM archive. This

correlation is illustrated on Figure 27.

Natural Language Addressing

101

Table 15. Relation between sizes of the text file and NL-ArM archive

number of records text file NL-ArM archive

2 500 1 1.7

10 000 1 1.2

250 000 1.13 1

1 000 000 1.15 1

25 000 000 1.17 1

100 000 000 1.09 1

Figure 27. Relation between text file and NL-ArM for writing

The analysis of this relation indicates that, for 8 characters as length of the keywords and

small quantity of records, the NL-ArM archive occupies more memory than text file but for the case of

very large data the NL-ArM archive is smaller.

The explanation of this regularity is in the specific hash indexing in the NL-ArM archives. In

the beginning, large empty hash structures are created which during the storing new records step by

step are filled with internal pointers. This way, for great number of records, the hash indexing memory

became about 5.5 bytes per record.

Basic experiments

102

It is seen at the Figure 27. The graphics lines which represent sizes of text file and NL-ArM

archive are crossed after 250 000 records. After 25 000 000 records the ratio comes to 1.09:1 which

has to be examined in further experiments to find possible next cross point.

It is important to underline that these experiments were based on artificial data with fixed

length (record of 30 bytes with 8 bytes artificially generated keyword of arbitrary ASCII symbols). If

the length of the keywords is variable, the size of NL-ArM archive will be different according of

length of the strings of keywords of stored information, i.e. according of number of layers of hash

tables (depth of trie).

In sequential storing of records, NL-ArM access method is slower than same operation in

text file. For applications where it is important in real time to register incoming information, the text

files are preferable than archives with NL-Addressing.

We did not provide experiments to compare NL-access with searching and random

reading/updating of records from text file because they are the slowest operations and every indexed

approach will be quicker [Connolly & Begg, 2002]. Indexed files are typical for relational data bases

and this case will be analyzed below.

4.2 Comparison with a relational database

To provide experiments with a relational database, we have chosen the system “Firebird”

because:

― It is a relational database offering many ANSI SQL standard features that runs on Windows,

Linux, and a variety of UNIX platforms;

― It offers excellent concurrency, high performance, and powerful query language;

― It has been used in production systems, under a variety of names, since 1981.

The Firebird Project is a commercially independent project of C and C++ programmers,

technical advisors and supporters developing and enhancing a multi-platform relational database

management system based on the source code released by Inprise Corp (known as Borland Software

Corp, too) on 25 July, 2000 [Firebird, 2013].

Database management system “Firebird” is built on the code of Borland InterBase

[InterBase, 2012]. It is a complete DBMS capable of managing databases in size from a few kilobytes

to scores of gigabytes with excellent performance [Cantu, 2012].

Firebird supports all major operating systems including Windows, Linux, Solaris, MacOS,

and there are multiple ways to access its database: native/API, dbExpress drivers, ODBC, OLEDB,

Net provider, JDBC, Python module, PHP, Perl, and others. InterBase [InterBase, 2012] and Firebird

[Borrie, 2004; ibphoenix, 2012] are widely distributed.

The experiments below were carried out with the version 2.0 of Firebird.

Natural Language Addressing

103

The experiments were provided in two steps: (1) Writing and (2) Reading.

The information was structured in the same manner as for experiments with sequential text

files. The basis of the experiments is a table with two columns:

 Keyword - several (8 or 14) digital symbols;

 String - 22 arbitrary symbols,

which are stored (written) as follow:

 In the relational database – as a table structure consisting of two columns: keyword and

string both encoded in ASCII;

 In the NL-ArM archive - the same string (22 characters) will be stored in the locations

specified by keyword as path with two parts (digital ASCII symbols - 4+4 or 7+7,

respectively).

For experiments with relational database NL-ArM hash function was programmed to convert

ASCII digital strings of the two parts of keyword in two 32 bit integer co-ordinate values, i.e. every

part of keyword (digital string) is assumed as integer number and it is converted in a 32 bit integer

value. In other words, string of 7 digit symbols is integer value which is less than 232 and may be

stored in 32 bits. This way we illustrate the possibility to have different hash functions for different

specific cases of information.

To analyze performance of NL-ArM the keys were generated by special algorithm to test

different variants of storing. For instance 10 000 rows may be stored via different combinations of the

keys’ two parts values:

 From 1 x 1 up to 10 x 1000;

 From 1 x 1 up to 100 x 100;

 From 1 x 1 up to 1000 x 10.

This way we have different “rectangular” varying the values of theirs vertex points. For

Firebird keys were concatenated strings of the two parts:

 From 00010001 up to 00101000;

 From 00010001 up to 01000100;

 From 00010001 up to 10000010.

Special experiments were provided with “rectangular” which first point is shifted to point

1000000 x 1000000, i.e. for instance:

 From 1000000 x 1000000 up to 1000010 x 1010000;

 From 1000000 x 1000000 up to 1010000 x 1000010;

 From 1000000 x 1000000 up to 1001000 x 1001000.

For Firebird these keys looked as:

 From 10000001000000 up to 10000101010000;

 From 10000001000000 up to 10100001000010;

 From 10000001000000 up to 10010001001000.

Basic experiments

104

 Comparison of writing time characteristics

In Table 16, several results from three variants of writing experiments are presented. The
variants are based on a tables with two columns (key, string) and 10 000, 100 000, and 1 000 000 rows
respectively.

The two columns of Table 16, marked as (X) and (Y), contain values of the two parts of the
keywords which in the same time are coordinates of initial point of NL-ArM experimental rectangular.

Its diagonal point is given by the corresponded offsets (X) and (Y).

In the next column, the quantity of rows (X*Y) is given, respectively – 10 000, 100 000,

and 1 000 000.

The writing time has been measured in milliseconds (ms) and the results are presented in the
next two columns for Firebird and NL-ArM respectively.

In the last column, the ratio between Fireburd and NL-ArM for writing time is given.
Graphical visualization of the ratio is on Figure 28.

Table 16. Writing time comparison of Firebird and NL-ArM

row
No.:

initial values
of co-ordinates

size of intervals
of co-ordinates

Number of
cells

writing time (ms) ratio

Firebird NL-ArM Firebird : NL-ArM

(X) (Y) (X) (Y) (X*Y) (ms) (ms)

1 1 1 10 1000 10000 21297 141 151 : 1

2 1 1 100 100 10000 14094 140 100 : 1

3 1 1 1000 10 10000 15438 156 98 : 1

4 1 1 10 10000 100000 160094 1563 102 : 1

5 1 1 100 1000 100000 145719 14062 103 : 1

6 1 1 1000 100 100000 141547 1265 112 : 1

7 1 1 10000 10 100000 155578 1719 90 : 1

8 1 1 1 100000 100000 292625 2907 100 : 1

9 1 1 100000 1 100000 289406 9390 30 : 1

10 1000000 1000000 10000 10 100000 156656 2109 74 : 1

11 1000000 1000000 10 10000 100000 162000 1672 96 : 1

12 1 1 10 100000 1000000 1740234 16640 104 : 1

13 1 1 100 10000 1000000 1591688 15187 104 : 1

14 1 1 1000 1000 1000000 1589734 14656 108 : 1

15 1 1 10000 100 1000000 1583906 13250 119 : 1

16 1 1 100000 10 1000000 1738047 17875 97 : 1

17 1000000 1000000 1000 1000 1000000 1778953 15750 112 : 1

 Total: 6830000 11577016 128482 90.1 : 1

Natural Language Addressing

105

The average of writing time data in milliseconds for the three groups (10 000, 100 000, and

1 000 000) are presented in Table 17.

In the last column, the average ratio of Firebird and NL-ArM is given. This relation is

illustrated graphically on Figure 29.

Table 17. Average in milliseconds of writing time data

Number of cells
average writing time (ms) ratio

Firebird : NL-ArM Firebird ArM
10000 16943.000 145.670 116.330 : 1

100000 187953.125 4335.875 88.375 : 1
1000000 1670427.000 15559.670 107.330 : 1

Figure 28. Time in miliseconds for writing by

Firebird and NL-ArM

Figure 29. Time relation for writing by Firebird

and NL-ArM

Basic experiments

106

The results are expectable.

During initialization, Firebird take some additional time, than for rest records the consuming

time has logarithmic regularity.

NL-ArM has no initialization procedures and has linear regularity for writing of all records

(Figure 28). This relation may be seen at Figure 29, and more easily at Figure 30 where axes are

logarithmic.

Figure 30. Logarithmic time relation for writing

In the same time we have to comment some disadvantages of NL-ArM in relation to

Firebird. The keys used in the experiments were strings for the Firebird (relational) variants and two

separate 32 bit (4-byte) co-ordinates for NL-ArM.

In relational model all keys have same influence on the writing time – they are written in the

plain file by the same manner (as parts of records) and extend the balanced index in one or other its

section which takes practically same time.

In NL-ArM the different values of co-ordinates cause various archive structures which take

corresponded time for combinations of values. Practically, NL-ArM creates hyper-matrix and large

empty zones need additional resources – time and disk space, which are not so great due to smart

internal index organization but really exists.

Comparison of Firebird and NL-ArM writing times for the case of large empty zones in the

matrix is given in Table 18. It is a sub-table from Table 16 and numbers of rows are the same.

Natural Language Addressing

107

Table 18. Comparison of Firebird and NL-ArM for the case of large empty zones in

the matrix

row
No.:

initial values
of co-ordinates

size of
intervals

of co-
ordinates

Number
of cells

writing time
(ms)

ratio

Firebird
NL-
ArM

Firebird
: NL-
ArM

(X) (Y) (X) (Y) (X*Y) (ms) (ms)

7 1 1 10000 10 100000 155578 1719 90 : 1

4 1 1 10 10000 100000 160094 1563 102 : 1

10 1000000 1000000 10000 10 100000 156656 2109 74 : 1

11 1000000 1000000 10 10000 100000 162000 1672 96 : 1

The influence of storing types is presented in Table 19. Visualization of ratios is shown on

Figure 31.

For NL-ArM we have two cases:

1. Row oriented NL-ArM storing.

2. Column oriented NL-ArM storing.

Firebird is not so sensitive to the NL-ArM row and column oriented cases because these

cases are only switched parts of keyword and the key length is the same. For NL-ArM the second case

is more suitable because of column oriented hierarchical storing. Let remember, NL-ArM has multi-

layer structure of perfect hash tables with 232 entries. In addition, the NL-ArM hash tables have

balanced internal indexes specially adapted for storing large data sets. Because of this, they are not so

effective for small values of co-ordinates. For instance, the better ratio for the rectangle with starting

point 1000000x1000000 is just due to special internal indexing of NL-ArM which is adapted to great

co-ordinate values.

This conclusion is seen on Figure 31 where the Firebird ration line is practically horizontal

but NL-ArM ratio line descends.

Table 19. Influence of storing types

case type of ratio Firebird NL-ArM

1. column to row oriented case (ratio of row 4 to row 7) 1.029 0.909

2.
column to row oriented case for the rectangle with starting point

1000000x1000000 (ratio of row 11 to row 10)
1.034 0.793

Basic experiments

108

Figure 31. Ratios for NL-ArM row and column oriented writing

The influence of offset (1000000) is presented in Table 20. Visualization of ratios is shown

on Figure 32.

Again, for NL-ArM we have two cases:

1. Row oriented NL-ArM storing.

2. Column oriented NL-ArM storing.

As in previous, Firebird is not so sensitive to the NL-ArM row and column oriented cases

because they are only switched parts of keyword and the key length is the same. For NL-ArM the

second case is more suitable because of column oriented hierarchical storing.

This conclusion is seen on Figure 32 where the Firebird ratio line is practically horizontal but

NL-ArM ratio line descends.

Table 20. Influence of the offset from 1 to 1000000

case type of ratio Firebird ratio NL-ArM ratio

1.
row oriented storing

(ratio of row 10 to row 7)
1.007 1.227

2.
column oriented storing

(ratio of row 11 to row 4)
1.012 1.070

Natural Language Addressing

109

Figure 32. Ratios for the offset from 1 to 1000000

Concluding this part of experiments we have to note that the relations in Table 16 show that

in writing experiments, regarding NL-ArM, Firebird is on average 90.1 times slower. This result is due

to two reasons. The first is that balanced indexes of Firebird need reconstruction for including of every

new keyword. This is time consuming process. The second reason is the speed of updating NL-ArM

hash tables which do not need recompilation after including new information.

Due to specific of realization, for small values of co-ordinates NL-ArM is not as effective as

for the great ones.

Nevertheless, NL-ArM is always many times faster than Firebird.

If we need direct access to large dynamic data sets (via NL-path), than more convenient are

hash based tools like NL-ArM. For instance, such cases are large ontologies and RDF-graphs.

 Comparison of reading time characteristics

The experimental data for reading time characteristics are given in Table 21, which has

similar format as one for the writing time characteristics.

The experiments were done on the base of 6830000 queries with 8 or 14 byte numbers as

keywords (to model two-dimensional 4-bytes binary co-ordinates), stored in a text file in order to

maintain equivalence of Firebird with NL-ArM.

The columns of Table 21, marked as (X) and (Y), contain the co-ordinates of the initial point

of the experimental rectangular, i.e. initial values of the first and second parts of the keywords.

The diagonal point is given by the corresponded offsets (X) and (Y). In the next column

the quantity of read elements is given, respectively – 10 000, 100 000, and 1 000 000.

The reading time has been measured in milliseconds (ms) and the results are presented in the

next two columns. In the last column, the ratio between Fireburd and NL-ArM for reading time is

given.

Basic experiments

110

Table 21. Reading time comparison of Firebird and NL-ArM

initial values
of co-ordinates

size of
intervals

of co-ordinates

Number of
elements

generated in
the specified

interval

reading time
for 10,000
elements

ratio of
Firebird
to ArM

Firebird ArM

No.: (X) (Y) (X) (Y) (X*Y) (ms) (ms)

1. 1 1 10 1000 10000 532 156 3:1

2. 1 1 100 100 10000 406 172 2:1

3. 1 1 1000 10 10000 563 187 3:1

4. 1 1 10 10000 100000 1265 172 7:1

5. 1 1 100 1000 100000 234 188 1:1

6. 1 1 1000 100 100000 672 110 6:1

7. 1 1 10000 10 100000 2297 203 11:1

8. 1 1 1 100000 100000 13406 125 107:1

9. 1 1 100000 1 100000 15953 422 37:1

10. 1000000 1000000 10000 10 100000 1906 32 59:1

11. 1000000 1000000 10 10000 100000 1265 31 40:1

12. 1 1 10 100000 1000000 13547 188 72:1

13. 1 1 100 10000 1000000 2562 156 16:1

14. 1 1 1000 1000 1000000 1359 125 10:1

15. 1 1 10000 100 1000000 3719 250 14:1

16. 1 1 100000 10 1000000 21625 204 106:1

17. 1000000 1000000 1000 1000 1000000 750 32 23:1

Total: 6830000 82061 2753 29.8:1

The average of reading time data in milliseconds for the three groups (10 000, 100 000, and

1 000 000) are presented in Table 22. This is illustrated on Figure 33.

Table 22. Average in milliseconds (ms) of reading time data

number of reading time ratio

records Firebird NL-ArM Firebird NL-ArM

10000 500.33 171.67 2.67 : 1

100000 4624.75 160.38 33.5 : 1

1000000 7260.33 159.17 40.17 : 1

Natural Language Addressing

111

Figure 33. Time in milliseconds (ms) for reading by Firebird and NL-ArM

In the last column of Table 22, the average ratio of Firebird and NL-ArM for reading time is

given. This relation is illustrated graphically on Figure 34.

Figure 34. Time relation for reading by Firebird and NL-ArM

Concluding this part of experiments we have to note that the relations in Table 21 show that

in reading experiments, regarding NL-ArM, Firebird is on average 29.8 times slower.

This result is due to the speed of access in NL-ArM hash tables which do not need search

operations.

Again, note that if we need direct access to large dynamic data sets (via NL-path), than more

convenient are hash based tools like NL-ArM. For instance, such cases are large ontologies and

RDF-graphs.

Basic experiments

112

 Conclusion of chapter 4

In this chapter two main types of basic experiments were presented. NL-ArM has been

compared with (1) sequential text file of records and (2) relational database management system

Firebird.

The need to compare NL-ArM access method with text files was determined by practical

considerations – in many applications the text files are main approach for storing semi-structured

data. To investigate the size of files and speed of their generation we compared writing in a sequential

text file and in a NL-ArM archive.

For 8 characters as length of the keywords and small quantity of records, the NL-ArM

archive occupies more memory than text file but for the case of very large data the NL-ArM archive is

smaller. It is important to underline that these experiments were based on artificial data with fixed

length (record of 30 bytes with 8 bytes artificially generated keyword of arbitrary ASCII symbols). If

the length of the keywords is variable, the size of NL-ArM archive will be different according of length

of the strings of keywords of stored information, i.e. according of number of layers of hash tables

(depth of trie).

In sequential storing of records, NL-ArM access method is slower than same operation in

text file. For applications where it is important in real time to register incoming information, the text

files are preferable than archives with NL-Addressing.

To provide experiments with a relational database, we have chosen the system “Firebird”. It

should be noted that Firebird and NL-ArM have fundamentally different physical organization of data

and the tests cover small field of features of both systems.

We did not compare the sizes of files of NL-ArM and Firebird because of difference of

keywords – symbols for Firebird and integer values for NL-ArM.

In writing experiments, regarding NL-ArM, Firebird is on average 90.1 times slower. This

result is due to two reasons. The first is that balanced indexes of Firebird need reconstruction for

including of every new keyword. This is time consuming process. The second reason is the speed of

updating NL-ArM hash tables which do not need recompilation after including new information. Due

to specific of realization, for small values of co-ordinates NL-ArM is not as effective as for the great

ones.

In reading experiments, regarding NL-ArM, Firebird is on average 29.8 times slower. This

result is due to the speed of access in NL-ArM hash tables which do not need search operations.

If we need direct access to large dynamic data sets (via NL-path), than more convenient are

hash based tools like NL-ArM. For instance, such cases are large ontologies and RDF-graphs.

