
Natural Language Addressing

83

3 Access method based on NL-addressing

Abstract

This chapter is aimed to introduce a new access method based on the idea of NL-addressing.

For practical implementation of NLA we need a proper model for database organization and

corresponded specialized tools. Hash tables and tries give very good starting point. The main problem

is that they are designed as structures in the main memory which has limited size, especially in small

desktop and laptop computers. Because of this we need analogous disk oriented database

organization.

To achieve such possibilities, we decided to use “Multi-Domain Information Model”

(MDIM) and corresponded to it software tools. MDIM and its realizations are not ready to support

NL-addressing. We will upgrade them for ensuring the features of NL-addressing via new access

method called NL-ArM.

The program realization of NL-ArM, based on specialized hash functions and two main

functions for supporting the NL-addressing, access will be outlined. In addition, several operations

aimed to serve the work with thesauruses and ontologies as well as work with graphs, will be

presented.

3.1 Example of NL-addressing via burst tries

Analyzing Figure 17 and Figure 18, one may see a common structure in both figures. It is a

trie which leafs are containers. In Figure 17 leafs are Social Security Numbers (SS#) and in Figure 18

leafs are Binary Search Trees (BST). In addition, Figure 14 looks as it is created from many connected

Perfect Hash Tables (PHT).

An inference from this is the idea about a multi-way burst trie which:

― Nodes are PHT with entries for all letters of alphabet plus some additional symbols, for

instance “0” and “1” (“true” and “false”);

― Containers may hold subordinated burst tries.

To illustrate this as a way for possible realization of NL-addressing using burst tries, let see

an example (Figure 19).

In this example we use natural numbers instead of letters i.e. their machine codes. This way

our alphabet will consists of:

― 256 natural numbers if we will use ASCII encoding;

― 216 natural numbers for UNICODE 16 encoding;

Access method based on NL-addressing

84

― 232 natural numbers for UNICODE 32 encoding.

We assume that the computer word is 32 bits long and our numbering will permit 232

numbers. What encoding will be used depends of concrete requirements. For easy reading, here we

will consider ASCII encoding. This way we will use a small part of all possibilities of such

construction.

As we pointed above, we extend the idea of burst tries by creating a hierarchy. In this case

every container of a burst trie may hold:

― A string of letters, i.e. a word or phrase of words (such container is colored in magenta

on Figure 19 and has number 114);

― Subordinated burst trie.

The path to the container colored in magenta on Figure 19 is A = (66, 101, 101, 114).

It means that:

― Container 66 of root burst trie holds non empty burst trie in which:

� Container 101 holds non empty burst trie in which:

 Container 101 holds non empty burst trie in which:

 Container 114 is holds any information (string).

Figure 19. Example of location A=(66,101,101,114)

The numbering is unique for every burst trie. Because of this, there is no problem to have the

same numbers of the containers in the subordinated burst tries what is illustrated at the Figure 19 –

container 101 holds burst trie with container 101.

Consider the path we just have seen. If we assume these numbers as ASCII codes:

66 = “B”, 101 = “e”, 114 = “r”,

we may “understand” the path as the word “Beer” (Figure 20).

Natural Language Addressing

85

Figure 20. Example of natural language path A=(Beer)

At the end, the container, colored in magenta at Figure 21 and located by this path, may hold

arbitrary long string of letters (words, phrases). In our example we choose it to be the remarkable

aphorism of Benjamin Franklin:

“Beer is proof that God loves us and wants us to be happy”.

Figure 21. Example of content located by path “Beer”

Perfect hash tables and burst tries give very good starting point. The main problem is that

they are designed as structures in the main memory which has limited size, especially in small desktop

and laptop computers.

Access method based on NL-addressing

86

3.2 Multi-domain access method “ArM32”

For practical implementation aimed to store very large perfect hash tables and burst tries in

the external memory (hard disks) we need realization in accordance to the real possibilities. The

existing models, analyzed in this research, do not support such structures. Because of this, we decide

to make experiments with “Multi-Domain Information Model” (MDIM) [Markov, 1984] and

corresponded to it software tools. We will use MDIM as a model for database organization and

corresponded specialized tools we will upgrade to our case.

During the last three decades, MDIM has been discussed in many publications. See for

instance [Markov et al, 1990; Markov, 2004; Markov et al, 2013].

The program realizations of MDIM are called Multi-Domain Access Method (MDAM) or

Archive Manager (ArM) (Table 9).

Table 9. Realizations of MDAM:

no. name year machine type language and operating system

0 MDAM0 1975 MINSK 32 37 bit Assembler Tape OS

1 MDAM1 1981 IBM 360 32 bit FORTRAN DOS 360

2 MDAM2 1983 PDP 11 16 bit FORTRAN DOS 11

3 MDAM3 1985 PDP 11 16 bit Assembler DOS 11

4 MDAM4 1985 Apple II 8 bit UCSD Pascal Disquette OS

5 MDAM5 1986 IBM PC 16 bit Assembler, C MS DOS

6 MDAM6 1988 SUN 32 bit C SUN UNIX

7 ArM7 1993 IBM PC 16 bit Assembler MS DOS 3

8 ArM8 1998 IBM PC 16 bit Object Pascal MS Windows 16 bit

9 ArM32 2003 IBM PC 32 bit Object Pascal MS Windows 32 bit

10 NL-ArM 2012 IBM PC 32 bit Object Pascal MS Windows 32 bit

11 BigArM 2015 ... under developing 64 bit Pascal, C, Java MS Windows, Linux, Cloud

All projects of MDAM and ArM had been done by Krassimir Markov. The program

realizations had been done by:

- Krassimir Markov (MDAM0, MDAM1, MDAM2, MDAM3);

- Dimitar Guelev (MDAM4);

- Todor Todorov (MDAM5 written on Assembler with interfaces to PASCAL and C,

MDAM5 rewritten on C for IBM PC);

- Vasil Nikolov (MDAM5 interface for LISP, MDAM6);

Natural Language Addressing

87

- Vassil Vassilev (ArM7 and ArM8);

- Ilia Mitov and Krassimira Minkova Ivanova (ArM 32);

- Vitalii Velychko (ArM32 interface to Java);

- Krassimira Borislavova Ivanova (NL-ArM).

For a long period, MDIM has been used as a basis for organization of various information

bases.

One of the first goals of the development of MDIM was representing the digitalized military

defense situation, which is characterized by a variety of complex objects and events, which occur in

the space and time and have a long period of variable existence [Markov, 1984]. The great number of

layers, aspects, and interconnections of the real situation may be represented only by information

spaces’ hierarchy. In addition, the different types of users with individual access rights and needs

insist on the realization of a special tool for organizing such information base.

Over the years, the efficiency of MDIM is proved in wide areas of information service of

enterprise managements and accounting. For instance, the using MDIM permits omitting the heavy

work of creating of OLAP structures [Markov, 2005].

In this research we will use the Archive Manager – “ArM32” developed for MS Windows

(32 bit) [Markov, 2004; Markov et al, 2008] and its upgrade to NL-ArM.

The ArM32 elements are organized in numbered information spaces with variable levels.

There is no limit for the levels of the spaces. Every element may be accessed by a corresponding

multidimensional space address (coordinates) given via coordinate array of type cardinal. At the first

place of this array, the space level needs to be given. Therefore, we have two main constructs of the

physical organizations of ArM32 information bases – numbered information spaces and elements.

The ArM32 Information space (IS) is realized as a (perfect) hash table stored in the external

memory. Every IS has 232 entries (elements) numbered from 0 up to 232-1. The number of the entry

(element) is called its co-ordinate, i.e. the co-ordinate is a 32 bit integer value and it is the number of

the entry (element) in the IS.

Every entry is connected to a container with variable length from zero up to 1G bytes. If the

container holds zero bytes it is called “empty”. In other words, in ArM32, the length of the element

(string) in the container may vary from 0 up to 1G bytes. There is no limit for the number of

containers in an archive but their total length plus internal indexes could not exceed 232 bytes in a

single file.

If all containers of an IS hold other IS, it is called “IS of corresponded level” depending of

the depth of including subordinated IS. If containers of given IS hold arbitrary information but not

other IS, it is called “Terminal IS”.

To locate a container, one has to define the path in hierarchy using a co-ordinate array with

all numbers of containers starting from the one of the root information space up to the terminal

information space which is owner of the container.

The hierarchy of information spaces may be not balanced. In other words, it is possible to

have branches of the hierarchy which have different depth.

In ArM32, we assume that all possible information spaces exist.

If all containers of the information space are empty, it is called “empty”.

Access method based on NL-addressing

88

Usually, most of the ArM32 information spaces and containers are empty. “Empty” means

that corresponded structure (space or container) does not occupy disk space. This is very important for

practical realizations.

Remembering that Trie is a tree for storing strings in which there is one node for every

common prefix and the strings are stored in extra leaf nodes, we may say the ArM32 has analogous

organization and can be used to store (burst) tries.

 Functions of ArM32

ArM32 is realized as set of functions which may be executed from any user program.

Because of the rule that all structures of MDIM exist, we need only two main functions with

containers (elements):

 Get the value of a container (as whole or partially);

 Update a container (with several variations).

Because of this, the main ArM32 functions with information elements are:

― Arm Read (reading a part or a whole element);

― Arm Write (writing a part or a whole element);

― Arm Append (appending a string to an element);

― Arm Insert (inserting a string into an element);

― Arm Cut (removing a part of an element);

― Arm Replace (replacing a part of an element);

― Arm Delete (deleting an element);

― Arm Length (returns the length of the element in bytes).

MDIM operations with information spaces are over:

 Single space – clearing the space, i.e. updating all its containers to be empty;

 Two spaces – there exist several such type of operations. The most used is copying of

one space in another, i.e. copying the contents of containers of the first space in the

containers of the second. Moving and comparing operations are available, too.

The corresponded ArM32 functions over the spaces are:

― ArmDelSpace (deleting the space);

― ArmCopySpace and ArmMoveSpace (copying/moving the first space in the second in the

frame of one file);

― ArmExportSpace (copying one space from one file to the other space, which is located in

another file).

The ArM32 functions, aimed to serve the navigation in the information spaces return the

space address of the next or previous, empty or non-empty elements of the space starting from any

given co-ordinates. They are ArmNextPresent, ArmPrevPresent, ArmNextEmpty, and ArmPrevEmpty.

Natural Language Addressing

89

The ArM32 function, which create indexes, is ArmSpaceIndex – returns the space index of

the non-empty structures in the given information space.

The service function for counting non-empty ArM32 elements or subspaces is

ArmSpaceCount – returns the number of the non-empty structures in given information space.

Using ArM32 engine practically we have great limit for the number of dimensions as well as

for the number of elements on given dimension. The boundary of this limit in the current realization of

ArM32 engine is 232 for every dimension as well as for number of dimensions. Of course, another

limitation is the maximum length of the files, which depends on the possibilities of the operating

systems and realization of ArM. For instance, in the next version, ArM64 called “BigArM”, these

limits will be extended to cover the power of 64 bit addressing.

ArM32 engine supports multithreaded concurrent access to the information base in real time.

Very important characteristic of ArM32 is possibility not to occupy disk space for empty structures

(elements or spaces). Really, only non-empty structures need to be saved on external memory.

Summarizing, the advantages of the ArM32 are:

 Possibility to build growing space hierarchies of information elements;

 Great power for building interconnections between information elements stored in the

information base;

 Practically unlimited number of dimensions (this is the main advantage of the numbered

information spaces for well-structured tasks, where it is possible "to address, not to

search").

3.3 NL-ArM access method

MDAM and respectively ArM32 are not ready to support NL-addressing. We have to

upgrade them for ensuring the features of NL-addressing. The new access method is called NL-ArM

(Natural Language Addressing Archive Manager).

The program realization of NL-ArM is based on a specialized hash function and two main

functions for supporting the NL-addressing access.

In addition, several operations were realized to serve the work with thesauruses and

ontologies as well as work with graphs.

 NL-ArM hash function

The NL-ArM hash function is called “NLArmStr2Addr”. It converts a string to space path. Its

algorithm is simple: four ASCII symbols or two UNICODE 16 symbols form one 32 bit co-ordinate

word. This reduces the space’ level four, respectively – two, times. The string is extended with leading

zeroes if it is needed. UNICODE 32 does not need converting – one such symbol is one co-ordinate

word.

There exists a reverse function, “NLArmAddr2Str”. It converts space address in ASCII or

UNICODE string. The leading zeroes are not included in the string.

Access method based on NL-addressing

90

The functions for converting are not needed for the end-user because they are used by the

NL-ArM upper level operations given below.

All NL-ArM operations access the information by NL-addresses (given by a NL-words or

phrases). Because of this we will not point specially this feature.

Let’s illustrate the algorithm of NL-ArM hash function.

In the case of Figure 21, the couple

{(name), (content)}

is:

{(B, e, e, r), (“Beer is proof that God loves us and wants us to be happy.” Benjamin Franklin)}.

To access the text, we have to convert NL-path (B, e, e, r) to path of numbers

(66, 101, 101, 114), i.e. we have the consequence:

Beer => (B, e, e, r) => (66, 101, 101, 114) =>

=> (“Beer is proof that God loves us and wants us to be happy” Benjamin Franklin).

NL-addressing means that human or program will set the correspondence:

(Beer) => (“Beer is proof that God loves us and wants us to be happy” Benjamin Franklin)

and all rest work has be done by the NL-ArM hash function which has to convert name in a space

path, i.e.

Beer => (B, e, e, r) => (66, 101, 101, 114).

This hash function is one-one, and because of this, the resulting hash table is a perfect one.

Note that the NL-ArM is an access method and it receives commands only from other

program units. Some of them are aimed to serve the human-computer interface and may redirect users’

requests directly to NL-ArM (such units are experimental modules presented in this monograph).

Other units may concern some information processing like reasoning and may send to NL-ArM

requests according theirs need.

In the last case, the programs set the correspondence (name) => (content).

 NL-ArM operations with terminal containers

Terminal containers are those which belong to terminal information spaces. They hold

strings up to 1GB long.

There are two main operations with strings of terminal containers:

― NLArmRead – read from a container (all string or substring);

― NLArmWrite – update the container (all string or substring).

Additional operations are:

― NLArmAppend (appending a substring to string of the container);

― NLArmInsert (inserting a substring into string of the container);

Natural Language Addressing

91

― NLArmCut (removing a substring from the string of the container);

― NLArmReplace (replacing a substring from the string of the container);

― NLArmDelete (empting the container);

― NLArmLength (returns the length of the string in the container in bytes).

In general, the container may be assumed not only as up to 1GB long string of characters but

as some other information again up to 1GB. As a rule, the access methods do not interpret the

information which is transferred to and from the main memory. It is important to have possibility to

access information in the container as a whole or as set of concatenated parts.

Assuming that all containers exist but some of them are empty, we need only two main

operations:

1) To update (write) the string or some of its parts.

2) To receive (read) the string or some of its parts.

The additional operations are modifications of the classical operations with strings applied to

this case.

To access information from given container, NL-ArM needs the path to this container and

buffer from or to which the whole or a part of its content will be transferred. Additional parameters are

length in bytes and possibly - the starting position of substring into the string. When string has to be

transferred as a whole, the parameters are the length of the string and zero as number of the starting

position.

 NL-ArM operations with information spaces (hash tables)

With information spaces we may provide service operations with hash tables such as

counting empty or non-empty containers, copying or moving strings of substrings from containers one

to those of another terminal information space. We will not use these operations in the frame of this

work.

3.4 Example of NL-storing the Sample graph

As final example of this chapter, let see how the sample graph from previous chapter can be

stored using NL-addressing.

To make sample graph more “realistic”, we will put a question about representing the

characteristics of the nodes and edges. At the Figure 13 characteristics have been written as comments

to nodes and edges.

In the graph, the characteristics of nodes (viz. age, type) may be represented as additional

loop edges of type “has_characteristics” and different characteristics may be given by keywords and

corresponded values for these edges.

The characteristics of edges (viz. since) may be represented as additional information to the

node pointed by the corresponded edge. This information may be given again by corresponded

keywords and theirs values.

The final multi-layer representation of our sample graph is given in Table 10 and the final

version of the sample graph is shown at Figure 22.

Access method based on NL-addressing

92

Table 10. Final multi-layer representation of sample graph

 space path

human location Alice Bob Chess

NL-ArM location (65, 108, 105, 99, 101) (66, 111, 98) (67, 104, 101, 115, 115)

layer (file name)

has_characteristics Alice; Age: 18 Bob; Age: 22 Chess; Type: Group

knows Bob - since: 2001/10/03 Alice - since: 2001/10/04

members
 Alice; since: 2005/07/01;

Bob; since: 2011/02/14

is_member Chess; since: 2005/07/01 Chess; since: 2011/02/14

Figure 22. Final variant of the sample graph

Natural Language Addressing

93

Really, the Table 10 show what we will have in our sample database:

― Every layer (row of Table 10) is separate trie and will be stored in a separate file with

name of the layer;

― Human locations are given by names: Alice, Bob, and Chess, and NL-ArM (internal

computer) locations age given by paths: (65, 108, 105, 99, 101), (66, 111, 98),

(67, 104, 101, 115, 115);

― All cells of Table 10 written in bold are containers which hold corresponded information

(strings) from the cells;

― The locations (space paths) are common for all layers.

 Storing RDF-graphs by NL-ArM

We may easy represent the Table 10 by RDF-triples and vice versa (Table 11).

Table 11. Representation of the sample graph by RDF-triples

Subject Relation Object

Alice has_characteristics Alice – Age : 18

Alice knows Bob – since : 2001/10/03

Alice is_member Chess – since : 2005/07/01

Bob has_characteristics Bob – Age : 22

Bob knows Alice – since : 2001/10/04

Bob is_member Chess – since : 2011/02/14

Chess has_characteristics Chess –Type : Group

Chess members Alice; Bob

In other words, NL-ArM is ready for storing RDF information. Mapping of Table 11 in

Table 10 is just the algorithm for creating RDF-triple stores based on MDIM and NL-addressing.

From Table 11 it follows that we may define two main information models for storing

RDF-graphs using NL-ArM.

The first model we will denote as

RSO model, i.e. Relation-Subject-Object model,

and the second one as

SRO model, i.e. Subject-Relation-Object model.

Access method based on NL-addressing

94

The first information model for storing RDF-graphs is based on choosing the relations as

separate layers (file names) and subjects as NL-paths in all layers, i.e.

RSO model: Relation (Subject) => Object.

The second is the dual one – the subjects may be chosen as layers and the relations as

NL-path, i.e.

SRO model: Subject (Relation) => Object.

In both cases, the object is the only information to be stored in the archives.

The abstract structure of both models is:

NL-ArM_archive_file_name (NL-address) => Stored_information

What model has to be preferred depends of the sets of relations and subjects, i.e. one that has

less size is preferable to be selected as set of layers. If both of models have great size than the next

Universal model may be preferred.

In the Universal information model (UNL model), both Subject and Relation are equally

presented. In this model concatenation of Subject and Relation is assumed as NL-path in a common

archive (trie), i.e.

UNL model: NL-ArM_archive (Subject, Relation) => Object.

 Conclusion of chapter 3

This chapter was aimed to introduce a new access method based on the idea of Natural

Language Addressing.

MDIM and its realizations are not ready to support NL-addressing. We upgraded them for

ensuring the features of NL-addressing via new access method called NL-ArM.

The program realization of NL-ArM is based on specialized hash functions and two main

functions for supporting the NL-addressing access.

In addition, several operations were realized to serve the work with thesauruses and

ontologies as well as work with graphs.

NL-ArM is ready for storing RDF information. It is possible to define tree information

models for storing RDF-graphs using NL-ArM: (1) RSO model (Relation-Subject-Object model), (2)

SRO model (Subject-Relation-Object model), and (3) UNL model ((Subject, Relation) => Object

Universal model).

