
COMPUTATIONAL MODELS FOR BUSINESS AND ENGINEERING DOMAINS 187

Agent-Oriented Software Engineering Models

REDUCING SEMANTIC GAP IN DEVELOPMENT PROCESS OF MANAGEMENT

INFORMATION SYSTEMS FOR VIRTUAL ORGANIZATIONS

Jacek Jakieła, Paweł Litwin, Marcin Olech

Abstract: The paper describes experience gained by developing an agent-oriented methodology suitable for

design and implementation process of Management Information Systems for modern business structures

called virtual organizations. It starts with description of semantic gap problem, shows main concepts related

to agency and virtual organizations and describes similarities between virtual organizations and multi-agent

systems. Next we shortly present the state-of-the-art of currently used methodologies aimed at inter-

organizational modeling and show motivations which have become the rationale for our approach. What is

more we present the main methodology assumptions made, international standards the methodology follows

and the framework we have developed so far. The paper ends with conclusions and further research plans.

Keywords: business modeling, agent-oriented development methodology, agent-oriented-software

engineering, virtual organization, semantic gap, agent-oriented management information systems

ACM Classification Keywords: I. Computing Methodologies; I.2 Artificial Intelligence; I.2.11 Distributed

Artificial Intelligence; Multi-Agent Systems

Introduction

Nowadays business organizations are becoming increasingly complex systems. This complexity is well

visible during the development process of information system supporting modern organizations’ activities.

Organizations are no more monolithic structures with clear boundaries and areas of operations, well defined

according to functional hierarchies. Modern business structures can take different forms. Enterprise can

consist of distributed independent organizations with physical presence, that share resources to achieve

common goals [Franke 2002], or can be fully virtual and operate primarily via electronic means e.g. various

forms of business webs [Tapscott et al. 2000]. Therefore the structural and behavioral characteristics of

business firms have profoundly changed. All these changes have to be taken into consideration during the

process of designing the management information systems.

Apart from the complexity of business domain there is also the problem of complexity of software, which is

its essential property, not an accidental one. This inherent complexity derives from such elements as: the

difficulty of managing the development process, the flexibility possible through software, and the problems of

characterizing the behavior of discrete systems [Brooks 1995, Booch et al. 2007].

The third problem is that contemporary methodologies for software development are not equipped with

modeling methods for preparing system specification including all new characteristics of business problem

domains. As a result semantic gap arises between business models and software models used for

implementation of management information system. This gap is the source of many problems during the

process of transforming business specification into the software architecture. The main problem is that many

188 ITHEA

aspects of organization operations that should be supported by system under development are not taken

into account during development process and therefore software does not support properly business goals

of the enterprise. As there will be shown in the paper, the solution of this problem is to use appropriately

selected modeling concepts for all of the stages of software development. The concepts defined for every

stage have to have high semantic proximity, and thanks to this, the process of transforming business model

into software model is an intuitive and unambiguous mapping of specifications’ artifacts.

The paper presents the skeleton of management information system development methodology that has two

main goals. Firstly it improves the process of business and software complexity management. Secondly it

helps to reduce the semantic gap between business and system specifications prepared during software

development process. The proposed methodology is based on the concept of software agent and its

characteristics which are used as modeling constructs. As will be shown, such approach enables to better

manage the complexity of modeling process. What is more the semantic proximity of the agent and modern

organizations’ characteristics will lead to significant reduction of semantic gap between modeling artifacts

used at different stages of development process.

The Semantic Gap Problem

The semantic gap characterizes the difference between two descriptions of an object by different linguistic

representations. In computer science, the concept is relevant whenever human activities, observations, and

tasks are transferred into a computational representation. More precisely the gap means the difference

between ambiguous formulation of knowledge related to the application domain in a business specification

and its computational representation in a formal language – at first system specification and then

programming language.

Organization
Organization

Business specification

System specification

mapping

mapping

Semantic gap

System model

Business model

Fig. 1. Semantic Gap Problem

It is a fundamental task of software engineering to close the gap between application specific knowledge and

technically doable formalization. For this purpose domain specific (high-level) knowledge must be

transferred into algorithms and their parameters (low-level) [Dorai, Venkatesh 2003]. When developing

management information system there are two main analysis and design perspectives: business system

COMPUTATIONAL MODELS FOR BUSINESS AND ENGINEERING DOMAINS 189

perspective and software system perspective. In order to describe application domain, analyst with

stakeholders prepare business model that formalizes all important aspects of organization’s operations and

structure. It typically includes organization chart, strategy related documents (vision, mission and goals

statements), business processes models and data models.

This constitutes the basis for application domain analysis and requirements elicitation as well as

specification. In the next stage the system specification is derived from business specification. It includes the

software architecture and functionalities description as well as all the models related to static and dynamic

aspects of the system under development. The main question here is how to express business artifacts in

terms of implementation constructs? At this point the semantic gap problem usually arises because every

perspective uses its own set of concepts – different for business and software modeling, and therefore there

is no intuitive and unambiguous mapping between business and software mindsets. The problem is

visualized on the figure 1. In the following sections there will be shown how to tackle this problem. The

cornerstone of proposed solution is to base development methodology on an agent concept.

The Essence of Agency

Before advantages of agent oriented organization modeling and system development will be presented, it

seems advisable to explain the essence of agency and define two main concepts our methodology is based

on – an agent and a multi-agent system.

The Concept of Agent

Over the last two decades the concept of an intelligent agent has become really popular. A number of

researchers dealing with artificial intelligence domain focused on agency. Consequently numerous

definitions of an agent have been coined. Two of them are provided below.

Michael Wooldridge and Nicholas R. Jennings [Wooldridge, Jennings 1995] describe an agent as: a

hardware or (more usually) software-based computer system that enjoys the following properties:

 autonomy: agents operate without the direct intervention of humans or others, and have some kind

of control over their actions and internal state;

 social ability: agents interact with other agents (and possibly humans) via some kind of agent-

communication language, which enables to exchange their knowledge;

 reactivity: agents perceive their environment, (which may be the physical world, a user via a

graphical user interface, a collection of other agents, the INTERNET, or perhaps all of these

combined), and respond in a timely fashion to changes that occur in it;

 pro-activeness: agents do not simply act in response to their environment, they are able to exhibit

goal-directed behavior by taking the initiative.

Another definition has been proposed by S. Franklin and A. Graesser in their paper attempting to distinguish

software agents from regular computer programs [Franklin, Graesser 1996]: “An autonomous agent is a

system situated within and a part of an environment that senses that environment and acts on it over time, in

pursuit of its own agenda and so as to effect what it senses in the future.”

Based on definitions presented few vital attributes of an agent can be abstracted:

 an agent exists in a certain environment and thus it ceases to be an agent when extracted from

such environment,

 an agent senses its environment, acts on this environment and its actions can affect what an agent

will sense in the future,

190 ITHEA

 an agent operates over time and acts whenever it “feels” it’s necessary; unlike regular program

which terminates once its mission is accomplished,

 an agent operates autonomously pursuing its own goals and is able to undertake pro-active

behavior.

All these basic characteristics constitute conceptual framework that will be used later when trying to show

how agent oriented methodology may help to improve complexity management and reduce semantic gap

during management information system development process.

The Concept of Multi-Agent System

A Multi-Agent System may be defined as a set (society) of decentralized software components (where every

component exhibits the properties of an agent, mentioned in the previous section), that are carrying out

tasks collaboratively (often in parallel manner) in order to achieve a goal of the whole society. Later in the

paper this definition has been disaggregated and all the properties are used to show why the multi-agent

system can be considered as a very intuitive virtual organization modeling metaphor.

As presented definition reveals, software agents have the ability to collaborate with each other what enables

the creation of multi-agent systems. Collaboration is defined as a process in which society coordinate its

actions in order to achieve common goals. Software agents are able to collaborate with one another as well

as human agents.

The corner–stones of inter–agent collaboration are: communication and knowledge sharing. Communication

is basically an exchange of information among agents (agents can send messages to each other, observe

each other’s state and behavior, however, communication takes place on the knowledge level). To enable

knowledge sharing agents must have common goals and decompose the process of achieving these goals

into sequence of actions providing that every agent is capable of performing task assigned to it.

Inter–agent collaboration requires also a communication language. Currently the most popular agent

communication languages are: Knowledge Query and Manipulation Language (KQML) developed in early

90’s and FIPA-ACL developed by Foundation for Intelligent Physical Agents. Both rely on speech acts theory

and define a set of performatives, their meaning and protocol for perfomatives exchange.

Although there are many frameworks and agent architectures developed so far by AI community, we have

decided to base our methodology on Belief-Desire-Intension approach [Georgeff et al. 1999], which is most

widely used framework for multi-agent systems development and offers implementation constructs that are

semantically closest to virtual organization characteristics.

The Essence of Virtual Organization

Virtual organizations are (often temporary) value-added partnerships of independent, autonomous actors,

such as individuals, companies or research institutes that have established a pre–partnership relationship in

order to work together for achieving common goals. As we can see there is very close semantic proximity

between basic characteristics of virtual organization and multi-agent system. More detailed insights will be

presented in the next section.

Virtual organization can be viewed as a hub of partner firms that are selected according to an actual need in

order to carry out a given task on a temporary basis. They can be partnerships of independent firms with

physical presence. In such case every partner delegates specific unit of organization which constitutes the

part of the virtual organization structure. It can also be the whole organization that takes part in such alliance

COMPUTATIONAL MODELS FOR BUSINESS AND ENGINEERING DOMAINS 191

with all departments and resources it possesses. Possible configuration of virtual organization is presented

on figure 2.

Organizations may also take fully virtual forms. With the development of the Internet and modern ICT, new

ways of conducting business have evolved. Many firms without physical presence are conducting business

on electronic marketplaces. In such case virtual organization is a business web platform which provides the

environmental condition, such as trust and coordination mechanisms and tools, necessary for the dynamic

configuration of market and customer-driven value chain constellations [Franke 2002]. Therefore the task of

designing organization boils down to developing the software (in the form of business web) that will support

all operations of e-business partners related to extended supply chain (see figure 3).

Organization Z

Department A1 Department A2

Department X2

Organization W

Department X1 Department X2

Organization X

Department A Department B Department C

Virtual Organization
Organization X

Department A Department B Department C

Organization Y

Department 1 Department 2 Department 3

Task 1

Task 2

Task 3

Task 1

Department

Whole Firm

Task

Business Worker

Fig. 2. The Structure of Virtual Organization

In both cases it is possible to abstract the common characteristics of virtual organizations. Most important

are the following:

 process oriented organization structure rather than functional hierarchy,

 dynamic nature of organization structure that can change during its lifecycle,

 high autonomy of partners that constitute virtual organization,

 every business partner is self-contained what means that it has all needed competences and

resources for conducting specific category of tasks,

 goal orientation, what means that all the tasks are organized toward achievement of common

goals,

 physical distribution of partners.

As there will be argued later in the paper, in order to solve the semantic gap problem, all of the presented

characteristics have to be taken into account when developing the software supporting operations of virtual

organizations.

192 ITHEA

Delivery
Agent

Interface
Supplier
Interface

Payment
Gateway
Interface

Trust
Intermediary

Interface

Government
Agency

Interface

Customers

Virtual Organization

Front-End

Figure 3. The Structure of Business Web Virtual Organization

Agent Paradigm as a Modeling Framework and Complexity Management Tool

When considering agent paradigm as a modeling framework it is essential to answer two fundamental

questions. The first one is why agent and multi-agent system characteristics make agents so natural and

intuitive organizational modeling constructs? The second is why agent orientation is optimal choice for

complexity management?

One of the fundamental assumptions for our methodology is that business modeling process bases on multi-

agent system metaphor. It leads to perceiving and understanding of virtual organization in the way typical for

multi-agent system software engineering, but also takes under consideration business aspects including

most important virtual organization characteristics.

The similarities between multi-agent systems and business organizations are particularly visible in case of

virtual organizations. The table 1 presents observed similarities. In the first column there are basic structural

and behavioral characteristics of multi-agent systems, and in the second characteristics of virtual

organizations [Jakieła, Pomianek 2009].

Table 1. Resemblances between structural and behavioral characteristics of virtual organizations and multi-

agent systems

Multi-agent system Virtual organization

Multi-agent system is a set of decentralized software

components.

Virtual organization is value-added partnership of

decentralized business actors, such as individuals,

companies or research institutes.

Multi-agent system is a set of autonomous software

components.

Decentralization of partners that form virtual organization

requires autonomy delegation. It has drastically changed

the role of business actors, because “controlled positions”

have been replaced by positions which give full

competence. In case of virtual organization it is

impossible to avoid situation when partners, who perform

tasks related to common goals, are fully autonomous

entities.

Multi-agent system is a set of goal-oriented software

components.

Virtual organization is partnership of independent actors

that work together in order to achieve common goals.

COMPUTATIONAL MODELS FOR BUSINESS AND ENGINEERING DOMAINS 193

Multi-agent system is a set of self-contained software

components that may carry out tasks in parallel

manner.

Instead of artificial operations order, in virtual organization

natural operation order is used. Business processes

conducted by virtual organization are de-linearized. It

allows for performance acceleration, because tasks are

performed in parallel by self-contained business

partners. Every partner carries out the tasks in the most

effective and efficient manner because every virtual

organization component possesses competences and

resources needed for conducting specific category of

activities.

The organization of multi-agent system may change

dynamically depending on the current goals of society.

The structure of virtual organization can change during

its lifecycle, depending on the current goals that have to

be achieved.

Now let’s move to the issue of complexity management. As Grady Booch says “The task of the software

development team is to engineer the illusion of simplicity” [Booch et al. 2007], however as we have already

mentioned, complexity management is a serious problem in case of modern organizations modeling and

software development. In order to better explain how an agent paradigm, used as a mindset of our

methodology, can improve complexity management it is useful to define the concept of complex system.

Booch [Booch et al. 2007] relying on Simon’s work [Simon, 1996] has defined the basic characteristics of

complex systems:

 complexity frequently takes a form of hierarchy, where the system is composed of sub-systems

connected with each other, which have their sub-systems, which in turn have their sub-systems and

so on until the elementary level is reached. This hierarchy does not mean the superior-subordinate

relation. Thanks to the fact, that complex systems are nearly decomposable we can fully

understand them, describe or even perceive. Simon claims that it is highly probable that in reality

only the systems that have a hierarchical structure can be understood [Simon 1996]. Looking at

virtual organizations from this perspective, it is possible to distinguish such levels of hierarchy as

organization actors level, business process level, singular organization level and specific

configuration of few firms in a form of virtual organization (see figure 4),

OA

OA
OA

OA

OA

OA

OA

OA
OA

OA

OA
OA

OA

OA
OA

OA
OA

OA

OA

OA
OA

OA
OA

OA

AO OA
OA

OA
OA

OA

OA

Organizational

actor

Business

process

Organization

Virtual

Organization

H
ie

ra
rc

h
y

Fig. 4. Virtual Organization as a Complex System

194 ITHEA

 the choice which components of a system should be treated as elementary is arbitrary and

depends on the system observer’s decision,

 it is possible to identify interactions taking place between sub-systems as well as inside sub-

systems, between their components, however interactions of the second type have one row higher

frequency and are more predictable. The interaction frequency will differ depending on the level of

hierarchy. For example, within a business organization more interactions will take place between

employees working on the same process than between teams of employees working on different

processes. The differences in interaction frequency within and between sub-systems allow

decomposition and lead to the clear division between domains of analysis. In case of social

systems, and undoubtedly every organization can be seen as such system, nearly decomposable

character is clearly visible, therefore it is possible to exploit advantages of the decomposition

method,

 complex systems are mostly sets of similar elements composed in various combinations. In other

words there are certain common templates created on the basis of reuse of similar elementary

components or more complex structures in the form of sub-systems,

 systems organized hierarchically tend to evolve over time, and hierarchical systems evolve faster

than non-hierarchical ones. Simon claims that complex systems will evolve out of simple systems, if

certain intermediary forms exist [Simon 1996].

Taking into consideration characteristics of complex systems as well as agent paradigm it is possible to

show advantages of agent approach in the context of complexity management in the organization modeling

as well as management information system development process [Jakieła 2006].

As the first argument it can be noticed, that agent oriented decomposition of a problem domain is an

effective way to divide the problem space, while modeling organizations and information systems. It can be

concluded from a number of factors. Firstly, hierarchical structure of complex systems causes, that

modularization of organization components in terms of goals, that are to be achieved is a really intuitive

solution. As Jennings and Wooldridge claim hierarchical organization of complex systems causes that at

each level of the hierarchy, the purpose of the cooperation between sub-systems is achieving a functionally

higher level. Whereas within sub-systems, components which these sub-systems are composed of,

cooperate in order to achieve total functionality of a sub-system. As a consequence, decomposition oriented

on goals that are to be reached is very natural division [Wooldridge, Jennings 2000]. Applying this schema to

an organization the situation emerges where organization actors cooperate in order to achieve goals of the

process, in turn processes are realized in order to achieve the goal of the specific firm, and firms combine

their inherent competences in order to achieve the goals of virtual organization. It is worth to remember that

goal orientation is one of the main characteristics of an agent and thus agent concept can be used without

any additional effort.

Another vital issue is presentation of such characteristic of a modern organization as decentralization in the

area of information processing and control. In this case agent oriented decomposition seems to be an

optimal solution due to such characteristics of an agent as thread of control encapsulation in the form of

autonomy property. The distributed organizational components may be thus modeled with autonomous

agents as a basic modeling constructs.

Agent oriented approach allows also to solve problems connected with the design of interactions taking

place between system components. It is a serious issue due to the dynamics of interactions between

organization components. It is really frequent, that organization components enter an interaction in time

which is difficult to predict and for unknown at the design stage reasons. As a consequence it’s really

challenging to predetermine parameters of such interactions. The solution to this problem is existence of

system components that can make decisions concerning the type and range of interaction during runtime.

COMPUTATIONAL MODELS FOR BUSINESS AND ENGINEERING DOMAINS 195

Another argument for an agent oriented approach is that it allows to eliminate semantic gap between agent

abstraction used during the information system design phase and structures used during organization

modeling. It is directly connected with similarities which appear between structural and behavioral

characteristics of a multi-agent system and organization (table 1). Continuing this thread it is advisable to

point out the following conveniences:

 Mutual interdependencies among organization actors and organization sub-systems can be

naturally mapped into the system architecture in terms of high-level social interactions which take

place among agents.

 In virtual organizations dependencies of this type are present in the form of really complex network

of dynamically changing relationships. Agent based approach includes mechanisms which allow to

describe such relations. For example, interaction protocols such as Contact Net Protocol can be

used in order to dynamically create virtual organization structure, which can be, in case of such

need, activated and after reaching particular goals deactivated. What is more, there are off-the-

shelf structures, which can be used during the community modeling, what is really useful when

modeling organization actors and sub-systems [Wooldridge, Jennings 2000].

 The process of organization modeling and system design frequently requires to perceive modeled

object from the perspective of various abstraction levels, treating set of elements as atomic

modeling structure. The idea of an agent is flexible enough to be used in an elementary level or on

any detail level depending on the analyst’s needs. For example, an agent could be organization

actor, department or whole organization and components treated as elementary interact only in an

integrated form omitting details concerning intra-interactions.

 Organization modeling and system design with agent oriented approach leads to the structure,

which has numerous stable intermediary forms, what is really important concerning complexity

management. Among others it means that system components in the form of agents can be

created rather independently and, in case of such a need, added to the system providing a smooth

functionality growth.

After introduction to basic advantages of taken approach, the next section describes the methodology for

management information system development, based on all the insights that have been presented so far.

The Skeleton of Development Methodology

Related Works and Methodology Motivations and Assumptions

Motivations for our work have been derived from detailed analysis of research concerning development

methodologies for inter-organizational and virtual organizations management information systems [Huemer

et al. 2008, Yu 1995, Mylopoulos et al. 2002, Zaborowski 2006, Mili et al. 2010, Telang et al. 2012]. The

analysis discovered opportunities for improvements.

The first problem identified is the lack of guidelines for business modeling stage in the system lifecycle and

in some methodologies this stage has not been taken into consideration at all. As best practices, prepared

by Object Management Group show, business specification including all organization stakeholders’ needs

and business goals, is a key determinant of quality of management information system under development.

Next important issue is the ease of methodology adoption to practical applications. We assumed that the key

factor of fast methodology adoption is to make use of unified languages that are considered as international

standards for business and software systems modeling. Unfortunately part of methodologies in use (e.g.

COMMA, TROPOS) is based on non-standard, original notations what considerably decreases the speed of

adoption for business and industrial applications and narrows the circle of prospect users.

196 ITHEA

Analysis of research works enabled to formulate the following motivations for our methodology:

 The designing of information systems for virtual organizations requires the detailed business model

that describes structural and behavioral characteristics of application domain for which system is

being developed.

 The business model has to be precisely mapped into architecture and functionalities of the software

system that will support virtual organization operations.

 The system development should be supported by the process, analysis and design methods for

business modeling and system implementation as well as unified modeling language adopted by

software industry.

The motivations presented have been used for preparing the following methodology assumptions:

 Development methodology should be equipped with detailed business modeling stage that includes

such aspects as business motivation model, business processes model, business rules model and

organizational structure model. This enables to include in business specification the most important

characteristics of application domain and considerably improves the process of system

requirements elicitation and specification.

 All modeling methods developed as a part of methodology should be based on unified languages,

what will increase the speed of its adoption to business and industrial applications.

 Methodology should be agent oriented what will enable to reduce the semantic gap between

business and system requirements and facilitate the management of business and software

modeling complexity. Agent orientation of the methodology means that all modeling concepts used

are derived from agent paradigm and related to virtual organizations characteristics. What is more,

during implementation stage management information system should be developed as a multi-

agent software solution based on Belief-Desire-Intension (BDI) architecture.

Modeling Standards, Frameworks and Implementation Architectures Used

In order to increase the speed of methodology adoption it has been based on international modeling

standards. All the standards were used as the meta-models that have been extended and adjusted for our

methodology modeling methods. The following standards have been used:

 Business Motivation Model (BMM) – a standard developed by Object Management group which

allows a business plan to be developed, communicated and managed in an organized manner.

Business strategy is modeled in terms of Vision, Goals, Objectives, Mission, Strategies and Tactics,

and internal as well as external Influences. These influences are then assessed to identify the

potential impact they may have on the business. What is important all elements of the BMM are

developed from a business perspective. The main idea is to create a business model for the

elements of the business plan, before system design or technical development is begun. Thanks to

this, the business strategy can become the foundation for system requirements specification and

connects system solutions to their business intent [OMG 2013a].

 Business Process Modeling Notation (BPMN) – it is graphical notation that depicts the steps in

business processes. BPMN depicts the end to end flow of a business process. The notation has

been specifically designed to coordinate the sequence of processes and the messages that flow

between different process participants in a related set of activities. BPMN is targeted at a high level

for business users and at a lower level for process implementers. The business users should be

able to easily read and understand a BPMN business process diagram. The process implementer

should be able to adorn a business process diagram with further detail in order to represent the

process in a physical implementation [OMG 2013b].

 Unified Modeling Language (UML) – this is an industry standard modeling language with a rich

graphical notation, and comprehensive set of diagrams and elements. We have based all modeling

COMPUTATIONAL MODELS FOR BUSINESS AND ENGINEERING DOMAINS 197

methods on UML notation. As we have already mentioned the rationale for this was to increase the

speed of methodology adoption to business and industrial applications [OMG 2011].

 Eriksson and Penker Business Patterns – this is a set of UML extensions that enables to conduct

business modeling with the use of UML notation. Part of these patterns is used as a foundation for

organization layer in business modeling stage of our methodology [Eriksson, Penker 2000].

 Belief-Desire-Intension Architecture (BDI) – is one of the major approaches to building agents and

multi-agent systems, including commercial agent software. It is inspired by logics and psychology.

The main idea is to build agents using symbolic representations of agents’ beliefs, desires, and

intentions. It provides a mechanism for separating the activity of selecting a plan (from a plan

library) from the execution of currently active plans. Consequently, BDI agents are able to balance

the time spent on deliberating about plans (choosing what to do) and executing those plans (doing

it) [Borodini et al. 2007, Georgeff et al. 1999]. We used this architecture as a foundation for

implementation discipline. According to methodology assumptions presented before, the

management information system is developed as a multi-agent software solution which conforms to

BDI architecture.

Structure of Methodology

Our methodology has multi-layer organization. Its structure may be presented in two dimensions – static and

dynamic. Static structure describes how process elements are logically grouped into core process

disciplines. Basic process elements are: modeling methods, disciplines, artifacts, and roles. Dynamic

structure shows how the process, expressed in terms of cycles, phases, iterations, and milestones, unfolds

over the lifecycle of a project (figure 5). We borrowed dynamic structure from Rational Unified Process

(RUP), which defines four main phases: inception, elaboration, construction and transition. In inception

phase a good understanding of what system to build is gotten. It is done by getting a high-level

understanding of all the requirements and defining the system’s scope. In this stage the focus is also on

mitigating business risks, and producing the business case for building the system. Finally it is important to

get acceptance of all stakeholders and decide whether to proceed with the project. During elaboration phase

most technically difficult tasks such as: design, implementation, testing, and baselining an executable

architecture (including subsystems, their interfaces, key components, and architectural mechanisms) are

undertaken. What is more, major technical risks are addressed by code implementation and validation

[Barnes 2007].

Phases

Inception ConstructionElaboration Transition
Disciplines

Business
Modeling

Requirements

Analysis
& Design

Implementation

Iterations

Initial Elab 1 Elab 2
Const

2
Const

1
Const

3
Tran 1 Tran 2

Fig. 5. The Agent Oriented Development Methodology Dynamic Structure

Most of the implementation is done during construction phase. Programmers are developing first operational

version of the system on the basis of executable architecture. Then they deploy alpha releases to verify if

198 ITHEA

system under development meets stakeholders’ needs. At the end of this stage fully functional beta version

is deployed, however system still requires improvements and tuning related to overall functional and non-

functional requirements as well as quality.

Strategy Layer
Vision, Goals, Objectives Mission, Strategy, Tactic

Business Process Layer

Business Process, Sub-process, Activity Flow Control Logic

Assets Layer
Resource Fixed Asset

Rules Layer

Organization Layer

Business Policy Business Rule Regulation

Virtual
Organization

Company Department Section Worker

Business Modeling Discipline

Fig. 6. Structure of Business Modeling Discipline

Main aim of the transition stage is to collect final feedback and ensure the release of the system under

development addresses needs of all stakeholders. During this stage testing and minor adjustments are

made. Basic activities include fine-tuning of the product, configuration and usability analysis. Focus is also

on users training and integration issues.

Our original contribution is related to static structure of the methodology. We have extended business

modeling, requirements as well as analysis and design disciplines. What is more, according to methodology

assumptions, we have made implementation discipline agent oriented and prepare the transformations of

design artifacts to implementation constructs. The figure 6 presents our approach in the area of the business

modeling discipline.

Every layer is responsible for modeling specific aspect of the virtual organization. They are as follows:

 Strategy layer is split into two sections: Ends and Means. Ends section is used for describing state

the virtual organization wants to achieve. This section includes such elements as: Visions, Goals

and Objectives. Means section describes what courses of action need to be taken and how should

be executed. In this section there are store elements like Missions and Courses of Action

expressed in terms of Strategies and Tactics. Modeling concepts in the strategy layer have been

adapted from Business Motivation Model. Elements of the strategy layer are visually modeled with

the use of UML extensions developed for every modeling concept.

 Business Process layer is meant to model business processes, sub-processes, activities and finally

the logic of control flows. Elements of the business process layer are visually modeled with

Business Process Modeling Notation (BPMN) constructs.

 Assets layer is responsible for modeling all the resources and fixed assets which are used by virtual

organization business processes. Concepts in the assets layer are based on BMM and are visually

modeled with UML extensions.

COMPUTATIONAL MODELS FOR BUSINESS AND ENGINEERING DOMAINS 199

 Business Rules layer is used for modeling directives which govern or guide business processes.

There are three categories of directives: Business Policy, Business Rules and Regulations.

Concepts in the business rules layer are based on BMM and its visual notation is developed in the

form of UML extensions.

 Organization layer is meant to model the structure of the virtual organization. It includes such

elements as: workers, sections, departments and companies that form virtual organization.

Concepts in this layer are based on Eriksson & Penker patterns visually modeled with extended

UML language.

All layers are interconnected and therefore it is possible to trace any artefact between layers. For every layer

modeling methods have been developed according to framework published in [Mayer et al. 1995]. Every

modeling method is described in the structure consisted of name, method definition (concepts and

motivation), discipline (dictionary, grammar, detailed procedure) and use (how the method is used in the

system development process).

Integral part of every layer is a visual modeling language. The notation of the language has been based on

UML and concepts derived from standards presented before. The visual language was developed for every

layer for both business modeling and analysis and design disciplines with the use of meta-modeling

approach provided by OMG [OMG 2013c]. Sample meta-model of modeling language created for strategy

layer and means section is presented on figure 7.

class Section 02. Means

«metaclass»

Mission

tags

ID = unique key(Mission_1..N)

source = getVisionID

status = pending, finished, aborted

«metaclass»

Section 01. Ends::

Vision

«metaclass»

Course of Action

tags

DrivenBy = <LIST>{getDirectiveID}

«metaclass»

Strategy

tags

GoalRefID = <LIST>{getGoalID,goalStatus}

ID = unique key (Strategy_1..N)

status = {pending, finished, aborted}

TacticsRefList = <LIST>{getTacticID,tacticStatus}

«metaclass»

Tactic

tags

ID = unique key (Tactic_1..N)

status = {pending, finished, aborted}

StrategyRefID = <LIST>{getStrategyID,status}

«metaclass»

Section 01. Ends::

Goal

«metaclass»

Section 01. Ends::

Objectiv e

«metaclass»

Directiv e

tags

ID = unique key (Directive_1..N)

Source = {Vistual Organization, PartnerName, Government Policy}

Status = {pending, finished, aborted}

Type = {Business Policy, Business Rule, Regulation}

«metaclass»

02. Business

Rules Layer::

Business Policy

«metaclass»

02. Business

Rules Layer::

Business Rule

«metaclass»

Section 04. Business

Process::Business

Process

1..*

D governs CoA/ CoA is formulated based on D

1..*

*

realizes

*

*

implements

*

*

channelsEfforts

Toward

*

1..*

Makes operative

vision

1

*

is planned by means of

*

realizes

Fig. 7. Part of Visual Language Meta-model for Strategic Layer of Business Modeling Discipline

Elements filled with darker color comes from different sections/layers. Elements with brighter background

are native to the current layer and section. As can be seen, basic element in the Means section is a Mission,

which indicates the ongoing operational activity of the enterprise. Mission makes Vision operative. Every

200 ITHEA

Mission is planned by means of Strategy, which represent the essential Course of Action to achieve, Ends

— Goals in particular. Every Strategy is implemented by Tactic, which is a Course of Action that represents

part of the Strategy details. Tactics generally channel efforts towards Objectives. Every Strategy and Tactic

is Course of Action which is formulated based on Directive. Directives indicate how the Courses of Action

should, or should not be carried out — in other words, they govern Courses of Action. Specifically, a

Directive defines constraints or liberates some aspect of an enterprise.

After all activities related to business modeling discipline planned for specific iteration are done, Analysis

and Design discipline activities are carried out. The structure of Analysis and Design discipline is presented

on figure 8.

Strategy Layer
Goals, Beliefs

Assets Layer

Rules Layer

Organization Layer

Business Process Layer

Events, Plans

Beliefs

Beliefs, Context. Plans

Protocols, Agent acquaintances, Roles

Analysis and Design Discipline

Fig. 8. The Structure of Analysis and Design Discipline

As has already been mentioned, analysis and design as well as implementation disciplines have been

developed according to an agent paradigm. Therefore all the modeling concepts that are used for preparing

agent oriented system specification conform to BDI architecture. What is more all the concepts are related to

business modeling discipline concepts in such a way that there is a direct and unambiguous mapping

between business and systems specifications. Finally implementation discipline uses the programming

constructs from AgentSpeak language interpreted by Jason [Borodini et al. 2007].

Agent oriented modeling concepts are the following:

 Beliefs, which are used to represent information agent stores about environment, other agents and

itself. Interesting fact about beliefs in Jason is that they are annotated and therefore may be

maintained on the meta-level. There are three main annotations such as: percept, self and agent

name. Percept is used to denote information from the agent sensors (received from environment).

Self means that the belief is created by agent as mental note. Agent name suggests that source of

the belief is other agent.

 Goals represent the state of affairs the agent strives for. The representation of goal is the same of a

belief except that it is prefixed by exclamation mark.

COMPUTATIONAL MODELS FOR BUSINESS AND ENGINEERING DOMAINS 201

 Plans constitute courses of action an agent will execute in order to achieve its goals or to react to

changes in its environment. Every agent has the library of plans that determine its behavior. The

plan is structured as presented below.

triggering_event : context <- body.

The triggering event represents event that will be handled by plan. Context describes

circumstances under which the plan is suitable to handle the event. The body is a sequence of

actions that will be executed or new goals for the agent to achieve. The agent behavior may change

over time if new plans are acquired during the communication with other agents. Events result from

changes in beliefs and goals. Beliefs may be updated and new goals set or received from other

agents as a part of the delegation process. Events trigger execution of plans, provided that event

matches the triggering event and is applicable in the time it is selected.

 Protocols specify rules of how all messages will be exchanged between agents. Agent

acquaintances describe how agents are related to one another.

 Roles describe what agent is responsible for.

According to methodology assumptions all elements modeled in business modeling discipline have to be

mapped into agent paradigm concepts in analysis and design discipline and finally implemented as

management information system solution. What is also very important this conversion should be done in the

way that reduces semantic gap between business and system aspects.

Figure 9 presents the mapping between modeling concepts. Elements from Organization Layer are

represented using agents’ roles, agents’ acquaintances and composed protocols. Different resources

modeled in Assets Layer are mainly described using agents’ belief base. Concepts from Strategy Layer and

Ends section are mapped into the agents’ goals and beliefs. Concepts from Means section are mapped into

agents’ goals and plans. Business Policies, Business Rules and Regulations are used in plans mainly to

check their context. Business processes are converted to events or messages and plans.

Strategy Layer

Vision, Goals, Objectives

Mission, Strategy, Tactic

Business Process Layer

Business Proces, Sub-proces, Activity Flow Control Logic

Assets Layer
Resource Fixed Asset

Rules Layer

Organization Layer

Business Policy Business Rule Regulation

Virtual
Organization

Company Department Section Worker

Business Modeling Discipline

Beliefs

Goals

Plans

Events

Roles
Acquaintances

Protocols

Analysis and Design Discipline

Mapping between moceling concepts of
business modeling and analysis and design
disciplines.

Legend

Fig. 9. Mappings between Modeling Concepts

202 ITHEA

Final development activities are related to implementation of the design model. This is done with

AgentSpeak language and Jason interpreter. Because in Analysis and Design discipline all of the constructs

come from BDI approach, the implementation boils down to the conversion of design model to agent

oriented implementation constructs. However this is behind the scope of the paper as its aim was to present

of how an agent paradigm may be used as tool for reducing semantic gap and improving development

complexity management.

Conclusions and Further Research

High complexity and newly emerged characteristics of contemporary business structures require new

approach to management information systems development. This approach should address to main

problems: enable to reduce sematic gap between business model of application domain and design model

of the system under development as well as improve the process of complexity management. Paper

presents the solution in the form of agent oriented development methodology for systems supporting virtual

organizations’ operations. As was shown in the paper, agent orientation is an effective way to capture and

include in business model the structure and behavior of modern enterprises. It is possible because of very

high semantic proximity of agent paradigm modeling constructs and contemporary organizations

characteristics. Our methodology is generic what means that it can be used in system development for

organizations of any specificity and industry sector. Thanks to unified modeling language and process used

in our methodology, it can be fast adopted to business and engineering applications. What is more, because

of very detailed business modeling discipline it is possible to model all the important aspects of every

organization and finally elicit the system features that will fully support virtual enterprise’s business goals and

objectives.

The methodology is still under development. The future research will concern the detailed meta-model for

implementation discipline as well as automatic Model-Driven-Architecture transformations between

specifications artifacts. However the methodology in its current state of development may be used in

management information system prototype projects. This should be done in order to verify our approach and

improve its meta-models of visual language and the process (disciplines).

Bibliography

 [Barnes 2007] Barnes J.: Implementing the IBM Rational Unified Process and Solutions: A Guide to

Improving Your Software Development Capability and Maturity. IBM Press, 2007.

[Booch et al. 2007] Booch G., Maksimchuk R., A., Engel M., W., Young B., J.: Object-Oriented Analysis and

Design with Applications. Addison-Wesley, 2007.

[Borodini et al. 2007] Borodini R. H., Hubner J. F., Wooldridge M.: Programming Multi-Agent Systems in

AgentSpeak Using Jason. Wiley, Chichester, 2007.

[Brooks 1995] Brooks F., P.: The Mythical Man-Month: Essays on Software Engineering. Addison-Wesley,

1995.

[Dorai, Venkatesh 2003] Dorai, C., Venkatesh, S.: Bridging the Semantic Gap with Computational Media

Aesthetics. IEEE MultiMedia, 2003.

[Eriksson, Penker 2000] Eriksson H. E., Penker M.: Business modeling with UML: Business patterns at work.

John Wiley & Sons, 2000.

COMPUTATIONAL MODELS FOR BUSINESS AND ENGINEERING DOMAINS 203

[Franke 2002] Franke U., J.: Managing Virtual Web Organizations in the 21st Century: Issues and

Challenges. Idea Group Publishing, 2002.

[Franklin, Greasser 1996] Franklin, S., Greasser, A.: Is it an Agent, or just a Program?: A Taxonomy for

Autonomous Agents. University of Memphis, 1996.

[Georgeff et al. 1999] Georgeff, M., Pell B., Pollack M., Tambe M., Wooldridge M.: The Belief-Desire-

Intention Model of Agency. Intelligent Agents V: Agents Theories, Architectures, and Languages.

Spronger-Verlag, 1999.

[Huemer et al. 2008] Huemer Ch. et al.: The Development Process of the UN/CEFACT Modeling

Methodology. 10th International Conference on Electronic Commerce (ICEC) ’08 Innsbruck, Austria.

[Jakieła 2006] Jakieła, J.: AROMA – Agentowo zoRientowana metOdologia Modelowania orgAnizacji.

WAEiI, Politechnika Śląska, Gliwice, 2006

[Jakieła, Pomianek 2009] Jakieła J., Pomianek B.: Agent Orientation as a Toolbox for Organizational

Modeling and Performance Improvement. International Book Series “Information Science and

Computing”, Book 13, Intelligent Information and Engineering Systems, INFOS 2009, pp. 113-124,

2009.

[Jennings, Wooldridge 2000] Jennings N., R., Wooldridge M.: Agent-oriented software engineering.

Proceedings of the 9th European Workshop on Modeling Autonomous Agents in a Multi-Agent World :

Multi-Agent System Engineering, 2000.

[Mayer et al. 1995] Mayer, R., J., Crump, J., W., Fernandes, R., Painter, M., K., Keen A.: Information

Integration for Concurrent Engineering. Compendium of Methods Report. Interim Technical Paper.

Wright-Patterson Air Force Base. Ohio, 1995.

[Mili et al. 2010] Mili H. et al.: Business Process Modeling Languages: Sorting Through the Alphabet Soup,

ACM Computing Surveys, Vol. 43, No. 1, Article 4, 2010.

[Mylopoulos et al. 2002] Mylopoulos J., Castro J., Kolp M.: Towards requirements-driven information

systems engineering: the Tropos project, Information Systems 27 (2002) 365–389. Elsevier, 2002.

[OMG 2011] Object Management Group: Unified Modeling Language, ver. 2.4.1, August 2011.

[OMG 2013a] Object Management Group: Business Motivation Model, ver. 1.2b2, August 2013.

[OMG 2013b] Object Management Group: Business Process Model and Notation, ver. 2.0.2, December

2013.

[OMG 2013c] Object Management Group: Meta-Object Facility, ver. 2.4.1, June 2013.

 [Simon 1996] Simon, H.: The Sciences of Artificial. MIT Press, 1996.

[Tapscott et al. 2000] Tapscott, D., Lowy, A., Ticoll, D.: Digital Capital: Harnessing the Power of Business

Webs. Harvard Business Review Press, 2000.

[Telang et al. 2012] Telang R. P., Singh P. M.: Comma: A Commitment-Based Business Modeling

Methodology and its Empirical Evaluation, Proceedings of the 11th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2012), Conitzer, Winikoff, Padgham, and van

der Hoek (eds.), 4-8 June 2012, Valencia, Spain.

[Wooldridge, Jennings 1995] Wooldridge, M., Jennings, N., R.: Agent Theories, Architectures, and

Languages: A Survey. Springer-Verlag, 1995.

[Yu 1995] Yu E.: Modelling Strategic Relationships for Process Reengineering, Ph.D. Thesis, University of

Toronto, Department of Computer Science, Toronto, 1995

204 ITHEA

[Zaborowski 2006] Zaborowski M. „Model informacyjno-decyzyjny struktury danych o obiektach

zarządzania”, W: Kozielski St. i inni (red.) „Bazy danych. Modele, technologie, narzędzia. Analiza

danych i wybrane zastosowania”, WKŁ, 2006.

Authors' Information

Jacek Jakieła, Ph.D., Eng. – Department of Computer Science FMEA RUT; W. Pola 2,

35-959 Rzeszow, Poland; e-mail: jjakiela@prz.edu.pl

Major Fields of Scientific Research: Software Development Methodologies, Agent and

Object-Oriented Business Modeling, Internet Enterprises Models, Computational

Organization Theory and Multi-Agent Simulation of Business Architectures.

Paweł Litwin, Ph.D., Eng. – Department of Computer Science FMEA RUT; W. Pola 2,

35-959 Rzeszow, Poland; e-mail: plitwin@prz.edu.pl

Major Fields of Scientific Research: Applications of Neural Networks in Mechanics,

Computer Simulations, Finite Element Method.

Marcin Olech, M.Phil., Eng. – Department of Computer Science FMEA RUT; W. Pola 2,

35-959 Rzeszow, Poland; e-mail: molech@prz.edu.pl

Major Fields of Scientific Research: Multiagent Based Simulations, Application of Artificial

Intelligence in Industry.

mailto:jjakiela@prz.edu.pl
mailto:plitwin@prz.edu.pl
mailto:molech@prz.edu.pl

