
44 ITHEA 

 

 

THE LEAST SQUARES SUPPORT VECTOR MACHINE BASED  

ON A NEO-FUZZY NEURON 

Yevgeniy Bodyanskiy, Oleksii Tyshchenko, Daria Kopaliani 

Abstract: The paper presents a fuzzy least squares support vector machine (LS-FSVM) which is 

implemented with the help of neo-fuzzy neurons (NFN) and which is essentially a zero order Takagi-Sugeno 

fuzzy inference system. The proposed LS-FSVM-NFN is numerically simple because it’s generated with 

NFNs, it also has a small number of adjustable parameters and high speed associated with the possibility of 

applying the second order optimization learning procedures to process data in an online-mode. 
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Introduction 

Currently, artificial neural networks (ANNs) are widely used for solving Data Mining, intelligent 

control, forecasting, pattern recognition tasks, etc. under uncertainty conditions, nonlinearity, 

stochasticity, randomness, various types of disturbances and noise, thanks to its universal 

approximating abilities and learning opportunities based on experimental data characterizing 

functioning of the investigated object [Haykin, 1999; Du, 2014]. 

ANNs’ learning process is usually based on the use of  the criterion optimization procedure, the 

convergence speed of this procedure can be quite low, especially while training multi-layer 

networks such as a multilayer perceptron (MLP), which creates a number of problems when 

a training sample is fed to the system in the form of an observations’ sequence in an online mode, 

for example, adaptive control of non-stationary objects, Web Mining etc. 

To accelerate the learning process in neural networks whose output signal is linearly dependent on 

adjustable synaptic weights is possible, for example, using radial basis (RBFN), normalized radial 

basis (NRBFN), polynomial (PNN) and the GMDH-neural networks (GMDH-ANN), however, their 

use is often complicated by the so-called "curse of dimensionality." The issue is not only in arising 

computational difficulties, but the reason is the available experimental data may be not enough for 

estimating a large number of synaptic weights.  

An alternative to the optimization-based learning is the memory-based learning [Nelles, 2001] 

which is associated with a concept "neurons in the data points" [Zahirniak, 1990]. The most typical 

representative of neural networks whose training is based on this concept are generalized 

regression neural network (GRNN), but they solve the problem of interpolation and not 

approximation which complicates greatly their use while processing "noisy" data. 

A hybrid of different neural networks, whose training is based both on optimization and memory, 

are support vector machines (SVM) [Vapnik, 1974; Vapnik, 1979; Cortes, 1995; Vapnik, 1995]. Their  

architecture coincides with RBFN and GRNN, synaptic weights are determined as a result of 



COMPUTATIONAL MODELS FOR BUSINESS AND ENGINEERING DOMAINS 45 

 

solving a nonlinear programming problem, and activation functions’ centers are set according to the 

concept "neurons in the data points." 

Thus, this network is a network with direct information transmission, which are generalizations of 

such popular constructions as MLP, RBFN, GRNN, which implement an empirical risk minimization 

method [Vapnik, 1974; Vapnik, 1979]. They have been widely applied to solving identification, pattern 

recognition and neurocontrol problems [Haykin, 1999; Du, 2014]. Although SVM-networks have a 

number of unquestionable advantages, their training is quite time consuming from a computational 

point of view, as it has to do with solving nonlinear programming problems of high dimensionality. 

In this regard, least squares support vector machines (LS-SVM) [Suykens, 2002] were proposed as 

an alternative to the ordinary SVM, whose training is reduced to solving systems of linear 

equations. That’s much easier from a computational point of view. 

Neuro-fuzzy systems (NFS) [Jang, 1997] have more features compared to neural networks with their 

learning capability, approximation and linguistic interpretation of the results. Here, ANFIS [Jang, 

1993] and TSK-systems [Takagi, 1985] are the most widely used systems, whose output layer is 

adjusted with the help of linear learning algorithms. It should be mentioned that the majority of 

neuro-fuzzy systems is trained with the help of optimization procedures. 

A fuzzy analogue of a traditional SVM is a fuzzy support vector machine (FSVM) [Lin, 2002], where 

multidimensional kernel activation functions are replaced with one-dimensional bell-shaped 

membership functions. In [Abe, 2003], a least squares fuzzy support vector machine (LS-FSVM) 

was introduced to solve the tasks of pattern recognition based on binary training signals. 

Although FSVM has a great potential compared to a traditional SVM, a training procedure is rather 

cumbersome from a computational point of view due to its implementation, which naturally limits its 

ability to solve real-time tasks. 

It is advisable to develop rather simple neuro-fuzzy systems to realize the learning idea based on 

the empirical risk minimization when information is processed in an online mode.  

A neo-fuzzy neuron [Yamakawa, 1992; Uchino, 1997; Miki, 1999] can be used as a basic element of 

such systems, which is characterized by high approximating properties, its simplicity and speed 

learning. 

A Neo-Fuzzy Neuron 

A neo-fuzzy neuron (NFN) is a nonlinear system with multiple inputs and a single output having the following 

mapping  
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where
liw  is the l th adjustable synaptic weight of the i th nonlinear synapse, 1 2 , ,l h  the total 

quantity of synaptic weights and, respectively, membership functions  li ix  in the same nonlinear 

synapse. In this way transformation carried out by the NFN can be written as 

    
1 1
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n h

li li i

i l

y w x                                                             (1) 

and the fuzzy inference carried out by the same NFN has a form of  

i li liIF x IS X THEN THE OUTPUT IS w  

which means that actually a nonlinear synapse implements a fuzzy zero-order Takagi-Sugeno reasoning 

[Takagi, 1985].  

Authors of the neo-fuzzy neuron [Yamakawa, 1992; Uchino, 1997; Miki, 1999] used traditional triangular 

constructions meeting the conditions of unity partitioning as membership functions: 
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where 
lic  are relatively arbitrarily chosen (usually evenly distributed) centers of membership functions over 

the interval  0 1,  where, naturally, 0 1 ix .  

This choice of membership functions ensures that the input signal 
ix  activates only two neighboring 

membership functions, and their sum is always equal to 1 which means that    

   1
1


 ,li i l i ix x   

and 

     1 1 
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Of course, other types of membership functions (except triangular) can be used like cubic and B-splines, 

polynomials, harmonic and orthogonal functions, wavelets etc. It should be noticed that the NFN contains 

nh  membership functions and the same amount of adjustable synaptic weights. 

Introducing a  1 nh vector of membership functions  

                 11 1 1 1 12 2
 , , , , , , ,
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h li i hn nx k x k x k x k x k x k       

(here 1 2 , , ,k N  is a number of the vector observation  x k  in a training sample or current discrete 

time) and a corresponding vector of NFN synaptic weights  
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the transformation (1) carried out by the NFN can be rewritten in the form 
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    ˆ .Ty k w x k  

The NFN authors used a gradient learning procedure  
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where  y k  is a reference signal,   is a learning rate parameter. 

In [Bodyanskiy, 2003], a learning algorithm was proposed that posses both tracking (non-stationary cases) 

and filtering («noisy» data) properties: 
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when 0 , the algorithm (2) coincides with the optimal Kaczmarz-Widrow-Hoff  learning algorithm.  

Basically, to set the NFN lots of other learning algorithms and identification [Nelles, 2001; Ljung, 1999] can 

be used including the standard least squares method  
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and also his recurrent and exponentially-weighted versions.  

The NFN training based on the empirical risk minimization 

Training the NFN with the help of the least squares support vector machine approach (LS-SVM-NFN) leads 

to the quadratic criterion optimization  
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within the constraints as a system of  N  linear equations  

       Ty k w x k e k                                                               (5) 

where 0  is a regularization parameter (a momentum term). 

The criterion optimization (4) without the constraints (5) leads to the expression 
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which is rather close to (3) and which is essentially a ridge estimator, where   I nh nh  is an identity 

matrix. 

Let’s introduce a Lagrange function to take into account the constraints’ system (5) 
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(here  k  stands for N  undetermined Lagrange multipliers) and the Karush-Kuhn-Tucker system of 

equations 
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where  0 1 N N  is a vector formed with zeros. 

The solution of the equation system (6) is: 
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or in a matrix form 
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(here   NNI N N  is an identity matrix) 

or 

 1   NN NN N NI Y  

(here        1 2 1 2     , , , , ; , , ,T

NN pq x p x q p N q N  ), whence  
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Then an output NFN signal  

     ˆ Ty x w N x  

for an arbitrary input signal x  taking into account (7), (8) can be written in the form 
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If the processing data are consecutively supplied, the training process of the LS-SVM-NFN should be 

fulfilled in an online mode. Thus when a pair of    1 1 ,x N y N  comes to the system, the 

expression (9) takes the form 
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where                   1
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It comes from the expression (10) that 
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Using the Frobenius formula in the form of [Gantmacher, 2000] 
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where taking into consideration (11) 
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one can easily calculate the  1 N th Lagrange multiplier with the help of  the expression 
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Then using the Sherman-Morrison formula of matrices inversion [Gantmacher, 2000], we finally get 
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Conclusion 

The paper presents a fuzzy least squares support vector machine (LS-FSVM) which is implemented with the 

help of neo-fuzzy neurons (NFN) and which is essentially a zero order Takagi-Sugeno fuzzy inference 

system. The proposed LS-FSVM-NFN is numerically simple because it’s generated with NFNs, it also has a 

small number of adjustable parameters and high speed associated with the possibility of applying the 

second order optimization learning procedures to process data in an online-mode. 
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