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Introduction 

It is known that among of the precision devices output  parameters drift process a great part is non-stationary 
processes, which are variables not only the expectation and standard deviation of instantaneous values, but also 
dependent on the placement time interval correlation function. These processes are not ergodic is enough inertia 
in time irreversibility is determined by the gradual accumulation of changes, in turn, leads to smooth changes in 
the nature of mathematical expectation. The mean square deviation of a random component is much less than 
the tolerance field, because such processes are called kind of quasidetermined. Probabilistic prediction of 
parametric reliability of products can be made by prediction changes in the density distribution f[x(ti)] and 
determining on this basis since the possible options to achieve the threshold with some confidence probability. 
Known that to describe the drift of mathematical expectation use exponential or linear model, and to describe 
changes in standard deviation use linear model. Using these dependencies can build models of change over time 
fractile parameter values, and  they help to make a prediction of the reliability with given probability of finding the 
parameter in the prescribed range. Guaranteed uptime Tgar and its variation is determined by the points of 
intersection of the functions of mathematical expectation m(t), upper fractile α1(t) and lower fractile α2(t)  in setted 
tolerance levels Δ1 and Δ2. This Tgar is defined as the average time without a parametric failure, t1 and t2 
respectively its minimum and maximum values. Dispersion since losing parametric reliability ΔT defined period 
between t1 and t2. This method is relatively simple and accurate, and allows to determine not only for 50%  
resource, but to other probability need only identify the fractile. But not always such processes can be processed 
using this method. In some cases, ΔT can be overwhelming, and sometimes altogether uncertain. As a result, it is 
necessary to study the method for its suitability in a particular case. Develop some criteria which would allow to 
check on the suitability of the method during the minimum number of calculations to statistical data processing. 
[Bobalo, 1996] 
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Describing of the method 

If the experimental values of the parameter xs, s = 1 .. k, in the intervals Δti, i = 1 .. n, then in each such period 
of products state  is characterized by the density f[x(ti)]. The probability of preservation efficiency is determined 
by the equations: 
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xhr = Δ is the limit (permissible) value of x(t); f[x(ti)] - density distribution of instantaneous values of the 
parameter in the range Δti. Accordingly, the probabilistic prediction of  parametric reliability of products can be 
made by changes forecasting in the density distribution f[x(ti)] and determining on this basis since the 
possible options to achieve the threshold. Guaranteed uptime of Tgar and its variation is determined by the 
intersections of functions m(t), α1(t) and α2(t) tolerance in levels of Δ1 and Δ2: 
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Device guaranteed uptime error   ΔT estimated by equation:                                                     

11 tTT gargar  , 

gargar TtT  22 , 

gargar TTT 21  . 

(4) 

[Nedostup, 1998] 

The study of guaranteed operating time error depending on the slope coefficients 

For linear parameter drift processes 

For linear change of mathematical expectation and standard deviation of change construct the following 
equations. 

 

   tkmtm 10 1 , (5) 
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    tukutmt 202   . 
(6) 
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Fig. 1. Graph of the mathematical expectation and fractile for 3 different values of k1 for fixed value of k2. 

 

Fig. 2. Graph of the mathematical expectation and fractile for 3 different values of k2 for fixed value of k1. 

From the pictures can be noted that the increased k1 do that the time difference between both fractile interception  
is reduced, with increased k1 ΔT error decreases but decreases and guaranteed time (intentionally increase k1 
lead only to deterioration of circumstances). And there is another dependency k2: increasing k2 ΔT 
error increases and the value of guaranteed time is independent of k2. Therefore advisable to try to reduce the k2. 
Equating formed to determine the intersection points with the tolerance level Tgar, t1, t2. 
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Errors are defined as follows: 
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Losing parametric reliability time dispersion ΔT determined by the sum: 

gargar TTT 21  . (11) 

To determine the influence coefficients k1, k2 for guaranteed time prediction error construct graph family of 
the error depending for the first fractile and the second fractile (ΔT1gar, ΔT2gar).  
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Fig. 3. Graph of guaranteed time error equation on k1 factor. 
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Fig. 4. Graph of guaranteed time error equation on k2 factor. 
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Graph in fig. 3 show that for certain values of k1 error ΔT2gar behaves unclear due to the fact that in 
this case ΔT2gar is unclear and since a value of k1 error starts to decrease from infinity. That can be 
determined that an increase in the coefficient k1 decrease error  but the decrease a guaranteed time to, in 
addition there is the extent to which k1 less error is uncertain, this limit is lower at lower values of k2. The graph in 
fig. 4 illustrate that an increase of the coefficient  k2  increases  measurement errors ΔT1gar, ΔT2gar  so that ΔT1gar 
tends to t  when m(t)=Δ, and tends to infinity ΔT2gar  when approaching  k2  to a certain extent which is greater  at 
 larger  values  of  k1. 

Behaviour of error indicated that there are some limits to the values of k1 and k2. Based on the nature of  
relationships and graphic material received is below these values k1 and k2 in which fractile α2 becomes equal 
to a constant: 

  ctukutkmmt  201002  . (12) 

This constant is easy to find it is the initial fractile value : 

  002 0  umc   . (13) 

Where is the following condition: –m0k1t  must compensate uk2t. The result is the equation: 

tuktkm 210  .  

To get the limit equation will reduce t: 
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For the growing dependence of all remains the same and the results are similar: 
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Fig. 5. Graph of the mathematical expectation and fractile for 
3 different values of k1 for fixed value of k2. 

Fig. 6. Graph of the mathematical expectation and fractile for 
3 different values of  k2 for fixed value of k1. 
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The limit for the case of the growing nature of drift takes the form: 
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For the exponential parameter drift processes 

Consider the descending process. In the linear approximation moments Tgar, t1, t2 are determined from 
the equations: 
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Solving the first equation we get: 
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The second and third equation is transcendental relative to t1, t2precise methods of their solutions do not 

exist. Therefore, schedule exponent 21tke  in series: 
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This alternating series as known is converge for any k1t1. Where as k1t1 may be small, can be neglected 
components with the powers number begin from second. That is consider that [Korn, 1984]: 
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And: 
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Fig. 7. Graph of guaranteed time error equation on k1 factor. Fig. 4. Graph of guaranteed time error equation on k2 factor. 
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Then equation (17) can be rewritten as: 
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And ΔT is determined by the sum: 

gargar TTT 21  .  

In the case of the growing exponential and linear approximation we obtain the relation: 
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Guaranteed time errors is calculated by the equations: 
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Losing parametric reliability time dispersion, as in the previous case, determined by the sum: 

gargar TTT 21  .  

Now consider the case of quadratic approximation of decreasing and increasing exponentials, according to 
preliminary considerations will describe the exponential quadratic equation. Then:  
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The equations of mathematical expectation m(t)  and fractiles α1(t) and α2(t) when descending exponentially take 
the form: 

110 )exp()(  garTkmtm ; (28) 
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The solution of these equations Tgar, t1, t2 are : 
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Changing the output setting for the growing exponential law describes by the dependencies: 
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The choice of linear or quadratic approximation of the average change in alue during the operation carried out by 
comparing the approximation error with the requirements for the accuracy of prediction reliability. 
These dependences reflect the relationship between the reliability of the devices, the initial values of parameters 
and patterns of change in service. It is clear that among the characteristics most subject to management during 
the initial values of parameters that can be set rationally considering reasonable manufacturing tolerances. Based 
on the above equations are built dependency graphs of mathematical expectation and fractiles for different values 
of slope k1 and k2 (Fig. 9, 10).  
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Fig. 9. Graph of the mathematical expectation and fractiles 
for different values of k1 for fixed values of k2. 

Fig. 10. Graph of the mathematical expectation and fractiles 
for different values of k2 for fixed values of k1. 

On fig. 9 and 10 shown that there are times when fractile not cross tolerance level changing its direction to 
reversed. It is similar situation as with linear drift. To determine the moment of time in which fractile change their 
direction build derivatives of each fractile. From mathematics we know that the derivative shows tangent angle 
function, so when derivative crossed with zero level the fractile  is a change direction (Fig. 11). 
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Fig. 11. Family of  derivatives on  fractiles α1, α2. 

On fig. 11 shown time points when fractile α2 begin to increase (t ≈ 1, 1.5, 5.5), but if the fractile not crossed 
the tolerance level to it time it will not cross never. 
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Fig. 12. Graph of guaranteed time error equation on k1 factor.  Fig. 13. Graph of guaranteed time error equation on k2 factor. 
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For exponential character of drift error behaves similarly to linear drift. We can identify the  limit equation from the 
following equation systems: 
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But formed equation is transcendent. 
Similar properties have a growing process. Schedules for the growing process are shown in fig. 14, 15, 16, 17. 

Conclusion 

As a result of the research is presented the some boundary conditions ("limit") to which method is suitable and 
effectiveness. For linear drift parameter limit is determined and clearly established (14, 15), and in the case of 
exponential nature of the drift parameter limit becomes transcendental form and therefore requires the solution of 
the transcendent equation for each case is derived from (35). Also found that reducing the error of guaranteed 
time desired is the increase in steepness parameter drift and drift reducing the slope standard deviation, but in 
terms of reliability necessary to reduce both the coefficients of steepness becouse is advisable to reduce the 
slope coefficient of standard deviation drift . 
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Fig.14. Graph of the mathematical expectation 
and fractile for different values of k1 at fixed values of k2. 

Fig. 15. Graph of the mathematical expectation and fractile for 
different values of k2 for fixed values  f k1. 
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