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STUDY THE QUALITY OF GLOBAL NEURAL MODEL WITH 

REGARD TO LOCAL MODELS OF CHEMICAL COMPLEX SYSTEM 

Grzegorz Drałus 

Abstract: In the paper global modeling of complex systems with regard to quality of local 

models of simple plants is discussed. Complex systems consists of several sub-systems. 

As a global model multilayer feedforward neural networks are used. It is desirable to 

obtain an optimal global model, as well as optimal local models. A synthetic quality 

criterion as a sum of the global quality criterion and local quality criteria is defined. 

By optimization of the synthetic quality criterion can be obtained the global model with 

regard to the quality of local models of simple plants. The quality criterion of the global 

model contains coefficients which define the participation of the local quality criteria in the 

synthetic quality criterion. The investigation of influence of these coefficients on the quality 

of the global model of the complex static system is discussed. The investigation is 

examined by a complex system which is composed from two nonlinear simple plants. 

In this paper complex system means real chemical object (i.e. a part of the line production 

of ammonium nitrite). 

Keywords: complex system, neural network, global modeling  
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Introduction 

In the area the design of complex control systems, there are numerous difficulties 

associated with constructing appropriate models of complex systems and determining 

their parameters. One of the basic issues to be considered a model of system as a whole, 

i.e. to develop a global model and ensuring the quality of approximations of system 

components, e.g. the development of local models. 

The classic task of modeling a complex system is to find optimal values of parameters  of 

adopted mathematical model based on the established quality criteria. Mathematical 

methods of  identification of complex objects are based on the distribution of components. 

The next step is to construct models of individual components (i.e. simple objects) and 

search for them optimal parameters. The next step is the submission of the optimal 
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models of simple models of the complex system [Bubnicki, 1980]. Obtained in this way 

model is not globally optimal, because while searching of the parameters of simple 

models do not take into account the interaction of components of a complex system 

during the modeling process. In this case we are dealing with a local modeling. 

The opposite approach to the local modeling is a global modeling of complex systems 

[Dralus and Swiatek 2000(1)], [Świątek, 2004]. 

Application of neural networks that have the ability to approximate nonlinear functions 

[Hornik, 1989] allow us to build and determine a global model parameters. 

The assumption of a global model to reflect the structure of a complex system in the work, 

and reflect the interactions of the components of a complex system during determination 

of model parameters. This allows us to build a more accurate model than 

the decomposition method [Dahleh and Venkatesh, 1997], [Dralus and Swiatek, 2000(1)], 

[Drałus and Świątek, 2009]. 

Modeling of static complex objects 

Complex system are difficult to model. In principle, the methods of mathematics are not 

capable of modeling complex objects. To make this possible a complex system should be 

decomposed to simple objects [Bubnicki, 1980]. Then, separate simple objects can be 

modeled as independent by any methods for simple objects without considering the fact 

that they are part of the complex system. After obtaining the optimal parameters of simple 

models, assembles the complex model, which corresponded to an complex system 

structurally. Created in this way complex model is locally optimal, but it is not globally 

optimal. New fields and modern tools allow us to build global models without their 

decomposition. One of these tools are neural networks that allow to build a global model, 

which corresponds to the structure of a complex system. 

By learning neural networks can to obtain satisfactory parameters of the model. Complex 

systems can have a varied structure. In this paper, the complex system has a cascade 

structure, which often occurs in industrial factories. 

Global model taking into account local models 

A complex system, which consists of cascaded in series R-th simple plants is shown in 

Figure 1. Simple plants are designated as O1, ..., OR. The global model structure should 

correspond to the structure of the complex system. Thus, a global model has a cascade 

structure, and consists of R-th simple models designated as Mr. In a global model (see 

Figure 1) the r-th output of simple model Mr is the input to the next simple model Mr+1, as 
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in the complex system. On the other hand, in the global model, besides simple models, 

local models can be distinguished. Then, the output of the simple object Or is the input to 

the next local model Mr+1. 

Physically the simple model Mr and the local model Mr is the same model (one set of 

neural network weights). They only differ in the input signals and way of learning. Local 

models will be used to build a global model taking into account the quality of local models. 
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Fig. 1. Block diagram of complex system and its global model 

In the global model, for each r-th local model is defined a local quality index as 

a difference between the output )(r
y of the r-th local model and the output )(r

y  of  

the r-th simple object: 
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where: )(r
w – weights of the r-th model simple/local model, K – a number of patterns 

rJ  – a number of outputs of the r-th object. 

For simplicity, in the global model is defined only one global quality index as a difference 

between the output )(ˆ R
y of the R-th simple model and the output )(R

y  of the R-th simple 

object: 
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where: W  – weights of a global model, K – a number of patterns, RJ  – a number 

of outputs of R-th object. 

As a reminder, the output )(ˆ R
y  of the R-th simple model is the output of the global model, 

which corresponds to the output )(R
y in the complex system. 

On the basis quality indices )(rQ  of local models and the global quality index Q  was 

formulated synthetic quality criterion of the global model with regard to the quality of local 

models. Thus, the synthetic quality criterion may take the form of a weighted sum indices 

of quality: 
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where: W – weights of a global model, r  – weighting coefficients of local models, 

such that 10  r  , 1
1




R

r
r , 0  – weighting coefficients of a global model, 

such that 10 0    . 

The weighting coefficients r  determine an individual participation of the quality indices 

)(rQ  of local models in the synthetic quality criterion (3), while the weighting coefficient 

0  determines the participation the global quality index Q  in this synthetic quality 

criterion sQ . There  are others method to take into account quality local models in 

a global model, for example a penalty function [Dralus and Swiatek, 2002].  

By minimizing the synthetic quality criterion sQ  can be calculated parameters of 

the global model. 

Backpropagation learning algorithm for a global model with regard to local 

models 

A multilayer neural network is a global model therefore to minimize the global quality index 

(3) a learning algorithm is derived based on back propagation of errors. The base learning 

algorithm for multilayer networks is the gradient descend. According to this algorithm an 

increment of weight for criterion (3) is calculating as: 
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Calculations of the gradient (3) of the global criterion led to a new complex 

backpropagation learning algorithm. However, the speed of that learning algorithm 

according to the gradient is small and depends on the choice of learning rate . Other 

algorithms are much faster. One of them is Rprop algorithm [Riedmiller and Branun, 

1992]. As in the case the complex gradient algorithm, the algorithm Rprop has been 

modified and adapted for the learning of complex neural networks, having the structure of 

the global model called the complex Rprop [Dralus and Swiatek, 2000 (2)]. 

Changing the weights in the complex Rprop learning algorithm in following layers: 

- in the output layer: 
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- in the hidden layers: 
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- in the "binding" hidden layers, i.e. in output layers of the simple models of a 

complex model: 
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In this algorithm, the learning speed ratio  is adaptive and in p-th step of learning is: 
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where: 
ji

sp
ji

w

pQ
S



 ))((W
 ; 50max ; 610min ; a=1,2; b=0,5 [Zell, 1993]. 

The complex Rprop algorithm was used to learning neural networks, of which is built 

a global model and local models. 



163 ITHEA 

Simulations 

For simulations was chosen a complex chemical object. This object is the production line 

of ammonium nitrite. It consists of several parts but, only the first two objects was selected 

for modeling (see Figure 2). So, the complex system for simulation consists of two simple 

non-linear objects connected in series. 

Mixer

Ammonia
oxidation

Ammonia (F201)

Air (F202)

Boiler

 

Fig. 2. The part of the installation for the production of ammonium nitrite 

In Figure 3 is shown a simplified block diagram of the chemical object as a part of the 

production line of ammonium nitrite. In the block diagram is omitted immeasurable signals 

(water, steam), treated it as a constant disturbance. Input signals for the complex system 

are: 1u - the flow of ammonia (F201), 2u - the air flow (F202). The output of the first 

object is the input of the second object: )(1
1y - temperature (T251-1), )(1

2y - temperature 

(T251-2). The outputs of the second object are: )(2
1y - the temperature in the boiler 

(T265); )(2
2y  - the solution level in the boiler (L238). These data are also the output of the 

complex system. 
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Fig. 3. Block diagram of the chemical object 

Measuring learning and testing data include four days from  instantaneous reports, 

recorded every two hours, come from the industrial production line of ammonium nitrite. 

The learning data was created by combining data from two days, they contain 24 items. 

Data from two subsequent days are the testing data. For simplified chemical object shown 

in Figure 3 was built a global model from a neural network, which is shown in Figure 4. 
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The neural model is a complex model, which corresponds to the structure of the complex 

system. The neural model has the following structure: 2-7T-4T-2L-7T-4T-2L. The complex 

model is divided into two simple models of the structure: 2-7T-4T-2L, connected in series. 

Simple models are simultaneously the local models and have two hidden layers with 

nonlinear activation functions of hyperbolic tangent (T), in the output layer the activation 

function is linear (L). 
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Fig. 4. The structure of the global model built from neural networks 

The learning data for the neural network derived from a real object, they have a very large 

range, e.g. air flow hovers around 5900, and the level of the liquid solution oscillates near 

value of 70. Thus, all data must be scaled to the range [0..1], in which work functions of 

activation. Scaling was based on dividing the input and output by the maximum value 

appropriate for the individual data according to the formula: 

max
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y

y j

j   (9) 

:

  
Where: 

s
jy  - is the scaled j-th component of the vector y , jy  - the current value of  

the j-th element of the vector,  maxy
 
-  value of the largest element in the vector y . 

An additional criterion for assessing the quality of modeling was adopted relative 

percentage error, abbreviated RPE, calculated for the j-th output of the r-th simple model 

with respect to the corresponding outputs a simple object: 
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Table 1. The values of quality indices for learning and testing data after 500 epochs of learning for 

the coefficient α0 =1. 

1  
)(1Q  

)(2Q  Q  sQ  
)(1Q  

)(2Q  Q  sQ  

 For learning data For testing data 

0,001 9.8E+6 124000 105 134000 1.8E+6 91200 112 92900 

0,01 116000 350 118 1630 3430 116 114 206 

0,1 2470 120 108 463 3170 122 126 490 

0,2 3170 122 126 858 2070 117 108 562 

0,3 2100 116 113 824 2050 118 119 757 

0,4 2070 117 108 1010 2010 117 109 929 

0,5 2190 117 108 1260 2210 117 109 1220 

0,6 2050 118 119 1400 1960 116 113 1280 

0,7 1950 116 110 1510 1950 120 119 1460 

0,8 2010 117 109 1740 2000 115 112 1680 

0,9 2130 116 110 2040 2030 116 114 1900 

0,99 2120 117 109 2210 2010 117 116 2050 

0,999 2200 117 109 2310 2020 117 116 2080 

Table 2. The values of quality indices for learning and testing data after 500 epochs of learning for 

the coefficient α0=0.5. 

1  
)(1Q  

)(2Q  Q  sQ  
)(1Q  

)(2Q  Q  sQ  

 For learning data For testing data 

0,001 1.8E+6 91200 112 92900 1.8E+6 86000 57 87700 

0,01 3430 116 114 206 4880 67 62 146 

0,1 3170 122 126 490 4170 71 64 513 

0,2 2070 117 108 562 1970 70 75 488 

0,3 2050 118 119 757 2030 70 70 693 

0,4 2010 117 109 929 1940 69 77 856 

0,5 2210 117 109 1220 2310 70 69 1220 

0,6 1960 116 113 1280 1920 70 71 1220 

0,7 1950 120 119 1460 1850 71 71 1350 

0,8 2000 115 112 1680 1970 70 59 1620 

0,9 2030 116 114 1900 2010 70 69 1850 

0,99 2010 117 116 2050 1980 70 73 2000 

0,999 2020 117 116 2080 2000 71 71 2030 
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Simulations were performed for three values of the coefficient 0  (i.e. for 

10  , 500 .  and 100 . ) which defines the scope of the influence of the global 

quality index Q  on the synthetic quality criterion (3). The coefficients r
 
determine the 

influence of local quality indices on the synthetic quality criterion. Changes in the 

weighting factors in the synthetic quality criterion were held so that each time their sum 

was 1 i.e. 121  . 

The values of the quality of local models )(rQ , the global quality index Q  and the 

synthetic quality criterion sQ  for changes in the coefficients 1  and 1  for coefficient 

10   can be found in Table 1. Simulation results for coefficient 500 .  are 

presented in Table 2 and for coefficient 100 .
 
in Table 3. Time of learning of the 

global model by using the complex Rprop algorithm was 500 epochs. 

Table 3. The values of quality indices for learning and testing data after 500 epochs of learning for 

the coefficient α0 =0.1. 

1  
)(1Q  

)(2Q  Q  sQ  
)(1Q  

)(2Q  Q  sQ  

 For learning data For testing data 

0,001 116000 350 118 477 122000 306 71 435 

0,01 2470 120 108 154 2270 71 71 100 

0,1 2210 117 109 337 2310 70 69 301 

0,2 2030 117 116 511 1990 69 71 460 

0,3 1970 118 117 685 1840 70 72 608 

0,4 1950 117 116 862 1880 71 72 802 

0,5 1900 115 112 1020 1780 70 69 932 

0,6 2100 117 116 1320 2080 70 69 1280 

0,7 2000 116 114 1450 1990 70 72 1420 

0,8 1970 117 115 1600 1910 70 73 1550 

0,9 1930 119 118 1760 1870 70 72 1700 

0,99 1960 118 118 1950 1890 70 72 1880 

0,999 1960 117 116 1970 1900 70 71 1910 

 

While the learning process of neural network the simple models interact to each other 

through the flow of learning signals from the input to the output, and by the flow of errors 

from the output layer to the input layer of the network. Local models may affect the value 
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of the global performance index Q . The learning process allows to determine of the 

global model parameters to achieve appropriate accuracy of the model. Network learning 

process can be terminated if the global quality index Q  has achieved the desired small 

value. An another criterion for the termination of the learning process can be the condition 

that each quality index of the local model has achieved the established minimum value.  

In Table 4, Table 5 and Table 6 are shown the relative percentage errors i.e. value of 

indices RPE for the learning data and the testing data.  

Table 4. The values of RPE indices for learning and testing data after 

500 epochs of learning for the coefficient α0 =1. 

1  RPE(1) RPE(2) RPE(out) RPE(1) RPE(2) RPE(out) 

 [%] [%] [%] [%] [%] [%] 

 For learning data For testing data 

0,001 43.5 26.3 0.69 43.1 26.0 0.55 

0,01 5.41 1.50 0.76 5.12 1.46 0.64 

0,1 0.79 0.74 0.68 0.71 0.65 0.62 

0,2 0.94 0.78 0.81 0.93 0.64 0.60 

0,3 0.73 0.72 0.74 0.69 0.64 0.62 

0,4 0.71 0.67 0.68 0.66 0.65 0.64 

0,5 0.76 0.67 0.70 0.69 0.65 0.64 

0,6 0.72 0.75 0.78 0.66 0.64 0.63 

0,7 0.70 0.69 0.72 0.65 0.65 0.65 

0,8 0.71 0.67 0.70 0.65 0.65 0.65 

0,9 0.74 0.69 0.72 0.68 0.65 0.65 

0,99 0.74 0.68 0.70 0.68 0.65 0.63 

0,999 0.76 0.67 0.70 0.70 0.65 0.62 

 

Table 5. The values of RPE indices for learning and testing data after 

500 epochs of learning for the coefficient α0 =0.5. 

1  RPE(1) RPE(2) RPE(out) RPE(1) RPE(2) RPE(out) 

 [%] [%] [%] [%] [%] [%] 

 For learning data For testing data 

0,001 25.2 25.2 0.67 25.2 24.6 0.56 

0,01 0.96 0.74 0.74 1.00 0.62 0.59 

0,1 0.94 0.78 0.81 0.93 0.64 0.60 

0,2 0.71 0.67 0.68 0.66 0.65 0.64 
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Table 5 continued. The values of RPE indices for learning and testing 

data after 500 epochs of learning for the coefficient α0 =0.5. 

1  RPE(1) RPE(2) RPE(out) RPE(1) RPE(2) RPE(out) 

 [%] [%] [%] [%] [%] [%] 

0,3 0.72 0.76 0.78 0.66 0.64 0.63 

0,4 0.71 0.67 0.70 0.65 0.65 0.65 

0,5 0.76 0.87 0.70 0.70 0.65 0.62 

0,6 0.70 0.72 0.75 0.65 0.64 0.64 

0,7 0.70 0.77 0.78 0.64 0.64 0.64 

0,8 0.72 0.72 0.72 0.65 0.64 0.57 

0,9 0.72 0.73 0.75 0.66 0.64 0.63 

0,99 0.71 0.74 0.76 0.66 0.64 0.65 

0,999 0.72 0.74 0.76 0.66 0.64 0.64 

 

The index RPE(1)  expresses the quality of the first local model, the index RPE(2) 

expresses the quality of the second local model, and RPE(out)  expresses the quality of 

the global model according to formula (10). 

Table 6. The values of RPE indices for learning and testing data after 

500 epochs of learning for the coefficient α0 =0.1. 

1  RPE(1) RPE(2) RPE(out) RPE(1) RPE(2) RPE(out) 

 [%] [%] [%] [%] [%] [%] 

 For learning data For testing data 

0,001 5.41 1.50 0.76 5.16 1.46 0.63 

0,01 0.79 0.74 0.68 0.71 0.65 0.63 

0,1 0.76 0.67 0.70 0.70 0.65 0.62 

0,2 0.72 0.74 0.76 0.66 0.64 0.64 

0,3 0.71 0.75 0.77 0.64 0.63 0.65 

0,4 0.70 0.74 0.76 0.64 0.64 0.64 

0,5 0.69 0.72 0.74 0.63 0.64 0.62 

0,6 0.74 0.75 0.77 0.67 0.64 0.63 

0,7 0.72 0.73 0.75 0.65 0.64 0.64 

0,8 0.71 0.74 0.76 0.65 0.64 0.65 

0,9 0.70 0.76 0.78 0.64 0.64 0.64 

0,99 0.70 0.76 0.78 0.65 0.64 0.64 

0,999 0.71 0.75 0.76 0.65 0.64 0.64 
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An Influence of the coefficient 1  on the model quality 

In Table 1, Table 2 and Table 3 are shown the influence of weighting coefficients 1  

(and 2 ) on the quality of local models, on the global index Q  and the synthetic index 

sQ  for the three-values of the coefficient 0  (for 10  , 500 .  and 100 . ) for 

the learning data. and the testing data. The data from Table 2 for 500 .  are shown in 

the form of graphs in Figure 5, respectively for the learning data and in Figure 6 for the 

testing data. 

For a detailed analysis of the influence of 1  and 2  factors, in addition the results for 

the coefficient 500 .  are presented graphically (as the most representative). 
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Fig. 5. Quality indices for the learning data, for 

coefficient 500 .  

Fig. 6. Quality indices for the testing data for 

coefficient 500 .  

By analyzing in detail the results e.g. for the selected value 500 . , can be seen that 

the increase in the coefficient values 1 from 0.01 to 0.2 causes the monotonic and rapid 

decline in the values of quality index )(1Q  of the first local model. Then, index )(1Q  very 

slowly and a small oscillating reaches a minimum value )(1Q =1950 for the ratio 

701 . . For the testing data, index )(1Q  as a function of coefficient 1  behaves 

similarly. The minimum value of index )(1Q )=1850 reaches for 701 .  as well as for 

the learning data.  

For the learning data, the increase in the factor 1  (decrease 2 ) the course of quality 

index )(2Q  is oscillating with small fluctuations which are almost constant except for one 

high value for 00101 . . The  index )(2Q
 
reaches a global minimum ( )(2Q =115) for 
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801 . . For the testing data, the course of index )(2Q  is very similar like for the 

learning data. The level of index )(2Q  is somewhat lower and reaches a global minimum 

( )(2Q =67) for the 0101 .  ( 9902 . ). 

The global quality index Q  has variable course but at the same level as the index )(2Q . 

For the learning data, the index Q  starts with value of 112Q  for 00101 . , and 

at the end of the range i.e. for 99901 .  reaches 116Q . The index Q  reaches 

a minimum for 201 . , equal to Q =108. For the testing data, index Q  for a change 

starts with the global minimum of 57Q  (for 00101 . ), then its course is variable 

and at the end of the range of coefficient 1  reaches 71Q  ( 99901 . ). 

For coefficient 201 .  reaches the maximum value of index 75Q  (for the learning 

data at this point was the global minimum). 

Global synthetic sQ  index, which is a weighted sum of )(1Q  and )(2Q  by 1  and 2 , 

and Q  by 0  has a variable course. For the learning data, index sQ  has a high value 

for 00101 .
 

(due to the large value of )(1Q , see Figure 5). Starting with 

the 0101 . where index sQ  has the minimum value ( sQ =206) the index sQ  

increases monotonically up to a maximum value ( sQ =2080) for 99901 . . For the 

testing data, the course of index sQ  is very similar to the course as for the learning data. 

The minimum value equal to 146 the index sQ  reaches for 0101 .  and 

the maximum value equal to 2030 reaches for 99901 . . 

An Influence of coefficient 0  on the model quality 

Analysis of an influence of 0  coefficient on a model quality is based on the results 

contained in all Tables.  
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Fig. 7. Quality index )(1Q  of first local model for 

the learning data  

Fig. 8. Quality index )(2Q  of second local 

model for the learning data 

 

Increase of the factor 0  that is increase participation of the global index Q  in 

the synthetic criterion sQ , increases the quality index )(1Q  of the first local model except 

results for 601 .  and 701 .  for the learning data and testing data. So if factor 

0  increases then values of quality index )(1Q  also increases (it is worsening, 

 see Fig. 7). 

Courses of indices )(2Q  of second local model are oscillating and are interwoven, so it is 

difficult to determine the influence of the coefficient 0  across the range 1  variability. 

For example, for the selected coefficient 501 .  the index )(2Q  achieves the best 

results for 100 .  which is the global minimum of index )(2Q  for the learning data, but 

for the testing data the global minimum is for another value of coefficient 1  

(see Figure 8).  

The global quality index Q  has also variable courses. Oscillations are greatest for small 

values of 1  from 0.001 to 0.3. For values of 1  above 0.3 waveforms of index Q  to 

stabilize and for 501 .  reaches a local minimum (see Figure 9). Analyzing graphs 

and not refer to individual deviation from the averaged values can be seen that the larger 

the value of factor 0  the lower value of the index Q , for the learning data. For factor 

10   the quality index Q  has the global minimum when factor 1  is equal  0.001 

(see Figure 9)). 
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For the testing data, the influence of coefficient 0  is different in different range value of 

1 . For the smallest values of coefficient 1  from 00101 .  to 301 .  the lowest 

values the index Q  takes for 10  . For The range of values of 1  (i.e. 401 .
 
to 

601 . ) the index Q  takes the smallest value for 100 . . 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
80

90

100

110

120

130

140

 

             

  

Q 
Q 
Q

 

 
500 .

100 .

10 

1   
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

500

1000

1500

2000

2500

3000

 

             

  

500 .

100 .

10 

1

Qs

s

s

Q

Q

 

Fig. 9. Quality index Q  of global model for the 

learning data  
Fig.10. Synthetic quality criterion sQ

 
for the 

learning data 

However, from 701 .  to 901 .  the index Q  takes the lowest values for 

500 . . At the end of coefficient 9901 . and 99901 . the index Q  is 

the smallest for 10  . The larger the value of coefficient 0  that is a larger share of 

the global index Q  in the synthetic quality criterion (3), the quality of the global model is 

better. For learning data, the influence of coefficient 0  on the quality index Q  can be 

seen more clearly and more explicitly (Figure 9). For the testing data, that influence is not 

as clear-cut and slightly different than for the learning data. 

Synthetic index sQ  has a different course than the others. It starts from large values of 

00101 . , for coefficient 0101 .  the index sQ  reaches the global minimum, 

and then increases almost monotonically with increasing 1  until it reach the maximum 

for 99901 . , depending on 0  (see Figure 10). Changeability of the index sQ  is 

similar for both the learning and the testing data. The graphs clearly shows the influence 

of the factor 0  on the quality index sQ . The smaller values of coefficient 0 , 

the smaller the value of index sQ  for both the learning data and the testing data. This can 

be explained by the fact that the quality criterion sQ  is  proportional to the component 

0 Q . Thus, the higher 0 , the larger index sQ . But we must remember sQ  
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is a synthetic criterion, and depends on the values its components i.e. the indices )(1Q , 

)(2Q  and Q . 

For the learning and the testing data the indicator of RPE(1) its course is almost monotone 

decreasing. The lowest values of the indicators RPE(1)  takes for 100 .  and 

the largest takes for 10   except for ( 601 .  and 701 .  (see Figure 11). 

For 100 .  the indicator RPE(1) reaches a global minimum for 501 . . At the point 

at which the coefficient 1  takes the value 0.5 ( 501 . ) the indicator RPE(1) has 

the global minimum for all values of coefficient 0  for the learning data and the testing 

data. 
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Figure 11. Quality index RPE(1) of the first local 

model for the learning data  

Figure 12. Quality index RPE(2) of the second 

local model for the learning data 

The course of index RPE(2) is oscillating (see Figure 12). For the learning data, the best 

results i.e. lowest values of indicator RPE(2) was obtained for 10   and highest values 

of indicator RPE(2)  was obtained for 100 . . However, for three different values of 1  

are exceptions (Figure 12). For the testing data, index RPE(2) oscillations are smaller 

(Table 5). However, for boundary values of coefficient 00101 .  and 99901 .  

the best results of indicator RPE(2) are for coefficient 10  . Generally, the best results 

of indicator RPE(2) was achieved for coefficient 10  , with the exception of only two 

values of coefficient 201 . and 601 . . 
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In Figure 13 are shown the output signals of first simple plant and simple model, and in 

Figure 14 are shown the output signals of second simple plant and  simple model for 

the learning data for coefficients: 500 . , 501 .  and 502 . . 

2 4 6 8 10 12 14 16 18 20 22 24
650

700

750

800

samples

 

 

o1   y(1)-1

m1  y(1)-1

o1   y(1)-2

m1  y(1)-2

2 4 6 8 10 12 14 16 18 20 22 24

60

80

100

120

140

160

180

200

220

240

260

280

samples

 

 

o2  y(2)-1

m2  y(2)-1

o2  y(2)-2

m2  y(2)-2

 

Fig. 13. The output signals of the first simple 
plant and simple model for the learning data  

Fig. 14. The output signals of the second simple 
plant and simple model for the learning data 

The simulations and the results show that the task of modeling complex systems is not 

a simple problem. The more that we had to do a simple case of a complex system 

consisting of two simple objects. The results obtained show relationships in the complex 

model, what is the quality of a global model and local models as a function of   

coefficients. The complex Rprop learning algorithm, which was used to simulations also 

has an impact on the results, which are in some cases inconclusive. Other algorithms 

such as the complex Bacpropagation in conjunction with the more unequivocal complex 

system, which consists of two non-linear mathematical functions give a more clear results 

[Drałous, 2010]. However the complex Rprop algorithm in comparison with the complex 

Backpropagation is much faster and more reliable. Although not entirely clear results in 

some points, however, we can infer much about the quality of the global model taking into 

account the quality of local models. This knowledge can be used in other cases of 

modeling  as well as in practice to design an optimal control of complex objects.  

Conclusion 

In this paper was presented the global model with respect to quality of local models of the 

chemical object. The global model and local models are built of multilayer neural 

networks. The influence of weighted coefficients 1  and 2  in the synthetic quality 

criterion (3) on the quality of the global model and the quality of local models was studied. 

The complex Rprop neural networks learning algorithm was used. By changing of 

coefficient 0  was also studied the influence of the global quality criterion Q  on 
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the quality of the global model and the quality of local models. The results for the learning 

data and the testing data was presented. 

The obtained results show that by proper selection of coefficients 1 , 2 , and 0  can 

to influence on the quality of local models and the quality of the global model. On this 

basis, you can specify for which values of the coefficients 1  and 2 , and 0  can seek 

the model globally optimal. 

The presented method and simulations are useful for investigation of computer control 

system for complex systems. 
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