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Abstract: NL-addressing is a possibility to access information using natural language 

words as addresses of the information stored in the multi-dimensional numbered 

information spaces. For this purpose the internal encoding of the letters is used to 

generate corresponded co-ordinates. The tool for working in such style is named 

OntoArM. Its main principles, functions and using for storing RDF graphs are outlined in 

this paper. 
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Introduction 

Resource Description Framework (RDF) is the W3C recommendation for semantic 

annotations in the Semantic Web. RDF is a standard syntax for Semantic Web 

annotations and languages [Klyne & Carroll, 2004]. 

The underlying structure of any expression in RDF is a collection of triples, each 

consisting of a subject, a predicate and an object. A set of such triples is called an RDF 

graph. This can be illustrated by a node and directed-arc diagram, in which each triple is 

represented as a node-arc-node link (hence the term "graph") (Fig.1). 

 

Fig. 1. RDF triple 

Each triple represents a statement of a relationship between the things denoted by the 

nodes that it links. Each triple has three parts: (1) subject, (2) object, and (3) a predicate 

(also called a property) that denotes a relationship. The direction of the arc is significant: 

it always points toward the object. The nodes of an RDF graph are its subjects and 

objects. 

The assertion of an RDF triple says that some relationship, indicated by the predicate, 

holds between the things denoted by subject and object of the triple. The assertion of an 
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RDF graph amounts to asserting all the triples in it, so the meaning of an RDF graph is 

the conjunction (logical AND) of the statements corresponding to all the triples it contains. 

A formal account of the meaning of RDF graphs is given in [Hayes, 2004].  

The state of the art with respect to existing storage and retrieval technologies for RDF 

data is given in [Hertel et al, 2009]. Different repositories are imaginable, e.g. main 

memory, files or databases. RDF schemas and instances can be efficiently accessed and 

manipulated in main memory. For persistent storage the data can be serialized to files, 

but for large amounts of data the use of a database management system is more 

reasonable. Examining currently existing RDF stores we found that they are using 

relational and object-relational database management systems. Storing RDF data in 

a relational database requires an appropriate table design. There are different approaches 

that can be classified in (1) generic schemas, i.e. schemas that do not depend on 

the ontology, and (2) ontology specific schemas.  

In the following we will present a new approach for organizing graph data bases, called 

Natural Language Addressing (NL-Addressing) and will illustrate it for the most important 

ontological table designs. 

Natural Language Addressing (NL-Addressing) 

The idea of Natural Language Addressing (NL-Addressing) is very simple. It is based on 

the computer internal representation of the word as strings of codes in any system of 

encoding (ASCII, UNICODE, etc.). 

For example, the ASCII encoding of the word „accession” has the next representation: 

97 99 99 101 115 115 105 111 110. It may be used as co-ordinate array, which indicates 

a point in the multidimensional information space, where the corresponded information 

may be stored. 

It is clear, the words have different lengths and, in addition, some phrases may be 

assumed as single concepts. This means that we need a tool for managing 

multidimensional information spaces with possibility to support all needed dimensions in 

one integrated structure. 

The independence of dimensionality limitations is very important for developing new 

intelligent systems aimed to process high-dimensional data. To achieve this, we need 

information models and corresponding access methods to cross the boundary of the 

dimensional limitations and to obtain the possibility to work with information spaces with 

variable and practically unlimited number of dimensions. Such possibility is given by the 

Multi-Dimensional Information Model (MDIM) [Markov, 2004] and correspond Multi-

Dimensional Access Method (MDAM) [Markov, 1984]. Its advantages have been 
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demonstrated in many practical realizations during more than twenty-five years. In recent 

years, this kind of memory organization has been implemented in the area of intelligent 

systems memory structuring for several data mining tasks and especially in the area of 

association rules mining [Mitov et al, 2009]. Here we will show its applicability for 

organizing of RDF stores. 

Multi-dimensional numbered information spaces 

Main structures of Multi-Dimensional Information Model (MDIM) are basic information 

elements, information spaces, indexes and meta-indexes, and aggregates. The definitions 

of these structures are remembered below. 

The basic information element (BIE) of МDIМ is an arbitrary long string of machine 

codes (bytes). When it is necessary, the string may be parceled out by lines. The length of 

the lines may be variable. 

Let the universal set UBIE be the set of all BIE. 

Let E1 be a set of basic information elements. Let 1 be а function, which defines 

а biunique correspondence between elements of the set E1 and elements of the set C1 of 

positive integer numbers, i.e.: 

E1 = {ei | ei  UBIE , i=1,…, m1},  C1 = {c1 | ci  N, i=1,…, m1};   1 : E1↔ C1 

The elements of C1 are said to be numbers (co-ordinates) of the elements of E1. 

The triple S1 = (E1, μ1, C1) is said to be а numbered information space of range 1 

(one-dimensional or one-domain information space).  

Let NIS1 be a set of all one-dimensional information spaces. 

The triple S2 = (E2, μ2, C2) is said to be а numbered information space of range 2 

(two-dimensional or multi-domain information space of range two) iff the elements of E2 

are numbered information spaces of range one (i.e. belong to the set NIS1) and 2 is 

а function which defines а biunique correspondence between elements of E2 and 

elements of the set C2 of positive integer numbers, i.e.: 

E2 = {ei | ei  NIS1 , i=1,…, m2},  C2 = {ci | ci  N, i=1,…, m2};   2 : E2↔ C2 

Let NISn-1 be a set of all (n-1)-dimensional information spaces. 

The triple Sn = (En, μn, Cn) is said to be а numbered information space of range n  

(n- dimensional or multi-domain information space) iff the elements of En are numbered 

information spaces of range n-1 (belong to the set NISn-1) and n is а function which 



87 ITHEA 

defines а biunique correspondence between elements of En and elements of the set Cn of 

positive integer numbers, i.e.: 

En = {ej | ej  NISn-1 , j=1,…, mn},   Cn = {cj | cj  N, j=1,…, mn};   n : En↔ Cn  

The information space Sn, which contains all information spaces of a given application is 

called information base of range n. The concept information base without indication of 

the range is used as generalized concept to denote all available information spaces. 

The sequence A = (cn, cn-1, …, c1), where ci  Ci, i=1, …, n is called 

multidimensional space address of range n of a basic information element. 

Every space address of range m, m < n, may be extended to space address of range n 

by adding leading n-m zero codes. Every sequence of space addresses A1, A2, …, Ak, 

where k is arbitrary positive number, is said to be a space index. 

Every index may be considered as a basic information element, i.e. as a string, and may 

be stored in a point of any information space. In such case, it will have a multidimensional 

space address, which may be pointed in the other indexes, and, this way, we may build a 

hierarchy of indexes. Therefore, every index, which points only to indexes, is called meta-

index. 

The approach of representing the interconnections between elements of the information 

spaces using (hierarchies) of meta-indexes is called poly-indexation. 

Let G = {Si | i=1, …, n} be a set of numbered information spaces. 

Let τ = {νij : Si → Sj | i=const, j=1, …, n} be a set of mappings of one "main" 

numbered information space Si  G | i=const, into the others  SJ  G, j=1, …, n , and, 

in particular, into itself. 

The couple: D = (G, τ) is said to be an "aggregate". 

It is clear, we can build m aggregates using the set G because every information space SJ 

 G, j=1, …, n, may be chosen to be the main information space. 

Operations in the MDIM  

After presenting the information structures, we need to remember the operations, which 

are admissible in the model. In MDIM, we assume that all information elements of all 

information spaces exist. 

If for any Si : Ei = Ø ˄ Ci = Ø , than it is called empty.  

Usually, most of the information elements and spaces are empty. This is very important 

for practical realizations. 
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Because of the rule that all structures exist, we need only two operations with a BIE: 

updating and getting the value and two service operations: getting the length of a BIE 

and positioning in a BIE. 

Updating, or simply – writing the element, has several modifications with obvious 

meaning: writing as a whole; appending/inserting; cutting/replacing a part; deleting. 

There is only one operation for getting the value of a BIE, i.e. read a portion from a BIE 

starting from given position. We may receive the whole BIE if the starting position is 

the beginning of BIE and the length of the portion is equal to the BIE length. 

We have only one operation with a single space – clearing (deleting) the space, i.e. 

replacing all BIE of the space with Ø (empty BIE). After this operation, all BIE of the 

space will have zero length. Really, the space is cleared via replacing it with empty space. 

We may provide two operations with two spaces: (1) copying and (2) moving the first 

space in the second. The modifications concern how the BIE in the recipient space are 

processed. We may have: copy/move with clearing the recipient space; copy/move with 

merging the spaces. 

The first modifications first clear the recipient space and after that provide a copy or move 

operation. The second modifications may have two types of processing: destructive or 

constructive. The destructive merging may be "conservative" or "alternative". 

In the conservative approach, the BIE of recipient space remains in the result if it is with 

none zero length. In the other approach – the BIE from donor space remains in 

the result. In the constructive merging the result is any composition of the corresponding 

BIE of the two spaces. 

Of course, the move operation deletes the donor space after the operation. 

Special kind of operations concerns the navigation in a space. We may receive the space 

address of the next or previous, empty or non-empty, elements of the space starting 

from any given co-ordinates. 

The possibility to count the number of non empty elements of a given space is useful for 

practical realizations. 

Operations with indexes, meta-indexes, and aggregates in the MDIM are based on 

the classical logical operations – intersection, union, and supplement, but these 

operations are not so trivial. Because of the complexity of the structure of the information 

spaces, these operations have two different realizations. 

Every information space is built by two sets: the set of co-ordinates and the set of 

information elements. Because of this, the operations with indexes, meta-indexes, and 

aggregates may be classified in two main types: (1) operations based only on  
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co-ordinates, regardless of the content of the structures; (2) operations, which take in 

account the content of the structures: 

― The operations based only on the co-ordinates are aimed to support information 

processing of analytically given information structures. For instance, such 

structure is the table, which may be represented by an aggregate. Aggregates 

may be assumed as an extension of the relations in the sense of the model of 

Codd [Codd, 1970]. The relation may be represented by an aggregate if 

the aggregation mapping is one-one mapping. Therefore, the aggregate is 

a more universal structure than the relation and the operations with aggregates 

include those of relation theory. What is the new is that the mappings of 

aggregates may be not one-one mappings. 

― In the second case, the existence and the content of non empty structures 

determine the operations, which can be grouped corresponding to the main 

information structures: elements, spaces, indexes, and meta-indexes. 

For instance, such operation is the projection, which is the analytically given 

space index of non-empty structures. The projection is given when some 

coordinates (in arbitrary positions) are fixed and the other coordinates vary for all 

possible values of coordinates, where non-empty elements exist. Some given 

values of coordinates may be omitted during processing. 

Other operations are transferring from one structure to another, information search, 

sorting, making reports, generalization, clustering, classification, etc. 

OntoArM 

The program realization of MDIM is called Multi-Domain Access Method (MDAM). 

For a long period, it has been used as a basis for organization of various information 

bases. There exist several realizations of MDAM for different hardware and/or software 

platforms. The most resent one is the FOI Archive Manager – ArM [Markov et al, 2008]. 

The newest MDAM realization is called ArM32 (for MS Windows). [Markov, 2004] 

The OntoArM is an ontological graph oriented access method but not a middleware in 

the sense of [Hertel et al, 2009]. It is an upgrade of ArM32. 

The OntoArM ontological elements are organized in ontological graph spaces with 

variable ranges. There is no limit for the ranges of the spaces. Every ontological element 

may be accessed by a corresponding multidimensional space address (coordinates) given 
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via NL-word or phrase. Therefore, we have two main constructs of the physical 

organizations of OntoArM – ontological spaces and ontological elements. 

In OntoArM the length of the ontological element (string) may vary from 0 up to 1G bytes. 

There is no limit for the number of strings in an archive but their total length plus internal 

indexes could not exceed the limited length of the file system for a single file (4G, 8G, 

etc.). There is no limit for the numbers of files in the information base as well as for theirs 

dispositions. 

OntoArm operations inherited from ArM32 

The operations with basic information elements are:  

 ArmRead (reading a part or a whole element);  

 ArmWrite (writing a part or a whole element);  

 ArmAppend (appending a string to an element);  

 ArmInsert (inserting a string into an element);  

 ArmCut (removing a part of an element);  

 ArmReplace (replacing a part of an element);  

 ArmDelete (deleting an element);  

 ArmLength (returns the length of the element in bytes). 

The operations over the spaces are:  

 ArmDelSpace (deleting the space),  

 ArmCopySpace and ArmMoveSpace (copying/moving the first space in the 
second in the frame of one file), 

 ArmExportSpace (copying one space from one file the other space, which is 
located in other file). 

The operations, aimed to serve the navigation in the information spaces return the space 

address of the next or previous, empty or non-empty elements of the space starting 

from any given co-ordinates. They are ArmNextPresent, ArmPrevPresent, ArmNextEmpty, 

and ArmPrevEmpty.  

The projections’ operations return the space address of the next or previous non-empty 

elements of the projection starting from any given co-ordinates. They are ArmProjNext 

and ArmProjPrev. 

The operations, which create indexes, are: 

 ArmSpaceIndex – returns the space index of the non-empty structures in the 
given information space; 

 ArmProjIndex – gives the space index of basic information elements of a given 
projection  
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The service operations for counting non-empty elements or subspaces are 

correspondingly:  

 ArmSpaceCount – returns the number of the non-empty structures in given 
information space; 

 ArmProjCount – gives the number of elements of given (hierarchical or arbitrary) 
projection. 

OntoArm RDF graph oriented operations 

Converting strings into space addresses 

There are two internal operations for conversion: 

- ArmStr2Addr – converts string to space address. Four ASCII symbols or two 
UNICODE 16 symbols form one co-ordinate word. This reduces four, 
respectively – two, times the space’ dimensions. The string is extended with 
leading zeroes if it is needed. 

- ArmAddr2Str – converts space address in ASCII or UNICODE string. The 
leading zeroes are not included in the string. 

The operations for conversion are not needed for the end-user because they are used by 

the upper level operations given below. All OntoArM operations access the information by 

NL-addresses (given by a NL-words or phrases). Because of this we will not point 

specially this feature. 

OntoArM operations for storing and receiving RDF information 

There are two main operations for creating the RDF-store: 

- OntoArmWrite – writes a buffer (usually NL-string). 
- OntoArmRead – reads a buffer (usually NL-string). 

It is clear; to work easily with RDF graphs, several additional operations are needed: 

- OntoArmAppend (appending a string to an element);  
- OntoArmInsert (inserting a string into an element);  
- OntoArmCut (removing a part of an element);  
- OntoArmReplace (replacing a part of an element);  
- OntoArmDelete (deleting an element);  
- OntoArmLength (returns the length of the element in bytes). 
-  

OntoArM operations for graph navigation 

The operations, aimed to serve the navigation in the graph are context depended – 

the format of the elements is important for the navigation. If the element is an NL-index, 

the navigation operation may take its next or previous NL-word for further processing. 

If the element has more complicated structure, the navigation operations have to be 

accommodated to it. In general, these operations are usual ones for navigating in 

the graph structures. 
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NL-Addressing for ontology generic schemas 

Vertical representation 

The simplest RDF generic schema is the triple store with only one table required in 

the database. The table contains three columns named Subject, Predicate and Object, 

thus reflecting the triple nature of RDF statements. This corresponds to the vertical 

representation for storing objects in a table [Agrawal et al, 2001]. 

The greatest advantage of this schema is that no restructuring is required if the ontology 

changes. Adding new classes and properties to the ontology can be realized by a simple 

INSERT command in the table. On the other hand, performing a query means searching 

the whole database and queries involving joins become very expensive. Another aspect is 

that the class hierarchy cannot be modeled in this schema, what makes queries for all 

instances of a class rather complex [Hertel et al, 2009]. 

It is easy to store this schema via OntoArM. The Subject will be the address and all its 

couples (Predicate, Object) may be stored at one and the same address. This way with 

one operation all arcs of the node of the graph will be received. There exists another 

variant of organization where the Predicate may be additional co-ordinate or name of 

the archive. In this case, additional operations for reading arcs will be needed. 

Nevertheless, in all cases the OntoArM will have linear complexity O(max_L), where 

max_L is the maximal length of the word or phrases, used for NL-addressing. In the same 

time, the relational table has complexity at least O(n log n), where n is number of all 

indexed elements (words), if we will take in account supporting indexing and binary 

search. Of course, the memory for binary indexes exceeds the OntoArM memory for 

internal indexes. At the end, the time for direct access is many times less then via binary 

search. The speed experiments with Firebird relation data base had showed about 30-ty 

times for reading and more than 90-ty times for writing in ArM’s favor [Markov et al, 2008]. 
 

Normalized triple store 

The triple store can be used in its pure form [Oldakowski et al, 2005], but most existing 

systems add several modifications to improve performance or maintainability. A common 

approach, the so-called normalized triple store, is adding two further tables to store 

resource URIs and literals separately as shown in Fig. 2, which requires significantly less 

storage space [Harris & Gibbins, 2003]. Furthermore, a hybrid of the simple and 

the normalized triple store can be used, allowing storing the values themselves either in 

the triple table or in the resources table [Jena2, 2012]. 
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Trilpes: Resources: Literals: 

 

Subject Predicate IsLiteral Object 

r1 r2 False r3 

r1 r4 True l1 

… … … … 
 

ID URI 

r1 …#1 

r2 …#2 

… … 

 

ID Value 

l1 Value1 

… … 

… … 

Fig. 2. Normalized triple store 

In a further refinement, the Triples table can be split horizontally into several tables, each 

modeling an RDF(S) property: 

― SubConcept for the rdfs:subClassOf property, storing the class hierarchy 

― SubProperty for the rdfs:subPropertyOf property, storing the property hierarchy 

― PropertyDomain for the rdfs:domain property, storing the domains and 

cardinalities of properties 

― PropertyRange for the rdfs:range property, storing the ranges of properties 

― ConceptInstances for the rdf:type property, storing class instances 

― PropertyInstances for the rdf:type property, storing property instances 

― AttributeInstances for the rdf:type property, storing instances of properties with 

literal values 

These tables only need two columns for Subject and Object. The table names implicitly 

contain the predicates. This schema separates the ontology schema from its instances, 

explicitly models class and property hierarchies and distinguishes between class-valued 

and literal-valued properties [Broekstra, 2005; Gabel et al, 2004]. 

The normalized triple store is ready for representing via OntoArM. Only what we have to 

do is to take in account the representing all arcs from a node by one space NL-index and 

the representing all properties as an aggregate. The Subject will be the NL-address and 

only Object will be saved. Possibility to concatenate all Objects for a Subject reduces 

the size of memory and time. There are different approaches for building the aggregate – 

using additional co-ordinate to the Subjects’ values or to use separate archives for storing 

the information. 

In all cases, the OntoArM has linear complexity O(max_L), the relation data base – 

at least O(n log n). 
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NL-Addressing for ontology specific schemas 

Horizontal representation 

Ontology specific schemas are changing when the ontology changes, i.e. when classes or 

properties are added or removed. The basic schema consists of one table with one 

column for the instance ID, one for the class name and one for each property in the 

ontology. Thus, one row in the table corresponds to one instance. This schema is 

corresponding to the horizontal representation [Agrawal et al, 2001] and obviously has 

several drawbacks: large number of columns, high sparsity, inability to handle multi-

valued properties and the need to add columns to the table when adding new properties 

to the ontology, just to name a few. 

Horizontally splitting this schema results in the so called one-table-per class schema - one 

table for each class in the ontology is created. A class table provides columns for all 

properties whose domain contains this class. This is tending to the classic entity-

relationship-model in database design and benefits queries about all attributes and 

properties of an instance. 

However, in this form the schema still lacks the ability to handle multi-valued properties, 

and properties that do not define an explicit domain must then be included in each table. 

Furthermore, adding new properties to the ontology again requires restructuring existing 

tables [Hertel et al, 2009]. 

The horizontal representation is an example of a set of aggregates in the sense of 

OntoArM. Storing every class in a separate archive gives possibility to add properties 

without restructuring existing tables because the aggregate may be described by a meta-

index. Again, NL-addressing in OntoArM has linear complexity O(max_L), the relation 

data base representation – at least O(n log n). 

Decomposition storage model 

Another approach is vertically splitting the schema, what results in the one-table-per-

property schema, also called the decomposition storage model. 

In this schema one table for each property is created with only two columns for Subject 

and Object. RDF(S) properties are also stored in such tables, e.g. the table for rdf:type 

contains the relationships between instances and their classes. 

This approach is reflecting the particular aspect of RDF that properties are not defined 

inside a class. However, complex queries considering many properties have to perform 

many joins, and queries for all instances of a class are similarly expensive as in 

the generic triple schema [Hertel et al, 2009]. 
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In practice, a hybrid schema combining the table-per-class and table-per property 

schemas is used to benefit from the advantages of both of them. This schema contains 

one table for each class, only storing there a unique ID for the specific instance. 

This replaces the modeling of the rdf:type property. For all other properties tables are 

created as described in the table-per-property approach (Fig. 3) [Pan & Heflin, 2004]. 

Thus, changes to the ontology do not require changing existing tables, as adding a new 

class or property results in creating a new table in the database. 
 

ClassA: Property1: ClassB: 

ID 

…#1 

… 
 

Subject Object 

…#1 …#3 

… … 
 

ID 

…#3 

… 
 

Fig. 3. Hybrid schema 

A possible modification of this schema is separating the ontology from the instances. 

In this case, only instances are stored in the tables described above. 

Information about the ontology schema is stored separately in four additional tables Class, 

Property, SubClass and SubProperty [Alexaki et al, 2001]. These tables can be further 

refined storing only the property ID in the Property table and the domain and range of the 

property in own tables Domain and Range [Broekstra, 2005]. This approach is similar to 

the refined generic schema, where the ontology is stored the same way and only 

the storage of instances is different. 

To reduce the number of tables, single-valued properties with a literal as range can be 

stored in the class tables. Adding new attributes would then require changing existing 

tables. Another variation is to store all class instances in one table called Instances. 

This is especially useful for ontologies where there is a large number of classes with only 

few or no instances [Alexaki et al, 2001]. 

The decomposition storage model is memory and time consuming due to duplicating 

the information and generation of too much binary search indexes. It is very near to 

the OntoArM style and may be directly implemented using NL-addressing but this will be 

not efficient. NL-addressing permits new possibilities due to omitting of explicit given 

information – names as well as binary indexes. The feature tables may be replaced by 

NL-addressing access to corresponded points of the information space where all 

information about given Subject will exist. This way we will reduce the needed memory 

and time. At the end, let point again, that NL-addressing has linear complexity O(max_L) 

and the relation data base representation – at least O(n log n). 



Artificial Intelligence Methods and Techniques for Business and Engineering Applications 96 

Conclusion 

NL-addressing is a possibility to access information using natural language words as 

addresses of the information stored in the multi-dimensional numbered information 

spaces. For this purpose the internal encoding of the letters is used to generate 

corresponded co-ordinates. The tool for working in such style is named OntoArM. Its main 

principles, functions and using for storing RDF graph were outlined in this paper. 

There are further issues not pointed above, which may require an extension of the triple-

based schemas and thus are affecting the design of the database: (1) Storing multiple 

ontologies in one database; (2) Storing statements from multiple documents in one 

database. 

Both points are concerning the aspect of provenance, which means keeping track of the 

source an RDF statement is coming from. When storing multiple ontologies in one 

database it should be considered that classes, and consequently the corresponding 

tables, can have the same name. Therefore, either the tables have to be named with 

a prefix referring to the source ontology [Pan & Heflin, 2004] or this reference is stored in 

an additional attribute for every statement. A similar situation arises for storing multiple 

documents in one database. Especially, when there are contradicting statements it is 

important to know the source of each statement. Again, an additional attribute denoting 

the source document helps solving the problem [Pan & Heflin, 2004]. 

The concept of named graphs [Caroll et al, 2004] is including both issues. The main idea 

is that each document or ontology is modeled as a graph with a distinct name, mostly 

a URI. This name is stored as an additional attribute, thus extending RDF statements from 

triples to so-called quads. For the database schemas described above this means adding 

a fourth column to the tables and potentially storing the names of all graphs in a further 

table. 

All these problems can be solved by OntoArM, because a separated ontology may be 

represented in one single archive. In addition, the NL-addressing permits accessing 

the equal names in different ontologies without any additional indexing or using of 

pointers, identification and etc. Only the NL-words or phrases are enough to access all 

information in all existing ontologies (resp. graphs). 

The linear complexity O(max_L) of NL-addressing is very important for realizing very large 

triple stores.  

OntoArM is implemented in the Institute of Cybernetics V.M. Glushkov at the National 

Academy of Sciences of Ukraine, Kiev (IC NASU). It has been used for storing ontology 

information about multiple documents from own data bases as well as from different 

internet sources. 
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The further work is concerned to implementing OntoArM for storing multiple ontologies in 

the libraries of the “Instrumental Complex with Ontological Purpose”, which is under 

developing in the IC NASU. 
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