
Artificial Intelligence Methods and Techniques for Business and Engineering Applications 84

STORING RDF GRAPHS USING NL-ADDRESSING

Krassimira Ivanova, Vitalii Velychko, Krassimir Markov

Abstract: NL-addressing is a possibility to access information using natural language

words as addresses of the information stored in the multi-dimensional numbered

information spaces. For this purpose the internal encoding of the letters is used to

generate corresponded co-ordinates. The tool for working in such style is named

OntoArM. Its main principles, functions and using for storing RDF graphs are outlined in

this paper.

Keywords: NL-addressing, RDF graphs, ontology representations.

ACM Classification Keywords: D.4.2 Storage Management; E.2 Data Storage

Representations.

Introduction

Resource Description Framework (RDF) is the W3C recommendation for semantic

annotations in the Semantic Web. RDF is a standard syntax for Semantic Web

annotations and languages [Klyne & Carroll, 2004].

The underlying structure of any expression in RDF is a collection of triples, each

consisting of a subject, a predicate and an object. A set of such triples is called an RDF

graph. This can be illustrated by a node and directed-arc diagram, in which each triple is

represented as a node-arc-node link (hence the term "graph") (Fig.1).

Fig. 1. RDF triple

Each triple represents a statement of a relationship between the things denoted by the

nodes that it links. Each triple has three parts: (1) subject, (2) object, and (3) a predicate

(also called a property) that denotes a relationship. The direction of the arc is significant:

it always points toward the object. The nodes of an RDF graph are its subjects and

objects.

The assertion of an RDF triple says that some relationship, indicated by the predicate,

holds between the things denoted by subject and object of the triple. The assertion of an

85 ITHEA

RDF graph amounts to asserting all the triples in it, so the meaning of an RDF graph is

the conjunction (logical AND) of the statements corresponding to all the triples it contains.

A formal account of the meaning of RDF graphs is given in [Hayes, 2004].

The state of the art with respect to existing storage and retrieval technologies for RDF

data is given in [Hertel et al, 2009]. Different repositories are imaginable, e.g. main

memory, files or databases. RDF schemas and instances can be efficiently accessed and

manipulated in main memory. For persistent storage the data can be serialized to files,

but for large amounts of data the use of a database management system is more

reasonable. Examining currently existing RDF stores we found that they are using

relational and object-relational database management systems. Storing RDF data in

a relational database requires an appropriate table design. There are different approaches

that can be classified in (1) generic schemas, i.e. schemas that do not depend on

the ontology, and (2) ontology specific schemas.

In the following we will present a new approach for organizing graph data bases, called

Natural Language Addressing (NL-Addressing) and will illustrate it for the most important

ontological table designs.

Natural Language Addressing (NL-Addressing)

The idea of Natural Language Addressing (NL-Addressing) is very simple. It is based on

the computer internal representation of the word as strings of codes in any system of

encoding (ASCII, UNICODE, etc.).

For example, the ASCII encoding of the word „accession” has the next representation:

97 99 99 101 115 115 105 111 110. It may be used as co-ordinate array, which indicates

a point in the multidimensional information space, where the corresponded information

may be stored.

It is clear, the words have different lengths and, in addition, some phrases may be

assumed as single concepts. This means that we need a tool for managing

multidimensional information spaces with possibility to support all needed dimensions in

one integrated structure.

The independence of dimensionality limitations is very important for developing new

intelligent systems aimed to process high-dimensional data. To achieve this, we need

information models and corresponding access methods to cross the boundary of the

dimensional limitations and to obtain the possibility to work with information spaces with

variable and practically unlimited number of dimensions. Such possibility is given by the

Multi-Dimensional Information Model (MDIM) [Markov, 2004] and correspond Multi-

Dimensional Access Method (MDAM) [Markov, 1984]. Its advantages have been

Artificial Intelligence Methods and Techniques for Business and Engineering Applications 86

demonstrated in many practical realizations during more than twenty-five years. In recent

years, this kind of memory organization has been implemented in the area of intelligent

systems memory structuring for several data mining tasks and especially in the area of

association rules mining [Mitov et al, 2009]. Here we will show its applicability for

organizing of RDF stores.

Multi-dimensional numbered information spaces

Main structures of Multi-Dimensional Information Model (MDIM) are basic information

elements, information spaces, indexes and meta-indexes, and aggregates. The definitions

of these structures are remembered below.

The basic information element (BIE) of МDIМ is an arbitrary long string of machine

codes (bytes). When it is necessary, the string may be parceled out by lines. The length of

the lines may be variable.

Let the universal set UBIE be the set of all BIE.

Let E1 be a set of basic information elements. Let 1 be а function, which defines

а biunique correspondence between elements of the set E1 and elements of the set C1 of

positive integer numbers, i.e.:

E1 = {ei | ei UBIE , i=1,…, m1}, C1 = {c1 | ci N, i=1,…, m1}; 1 : E1↔ C1

The elements of C1 are said to be numbers (co-ordinates) of the elements of E1.

The triple S1 = (E1, μ1, C1) is said to be а numbered information space of range 1

(one-dimensional or one-domain information space).

Let NIS1 be a set of all one-dimensional information spaces.

The triple S2 = (E2, μ2, C2) is said to be а numbered information space of range 2

(two-dimensional or multi-domain information space of range two) iff the elements of E2

are numbered information spaces of range one (i.e. belong to the set NIS1) and 2 is

а function which defines а biunique correspondence between elements of E2 and

elements of the set C2 of positive integer numbers, i.e.:

E2 = {ei | ei NIS1 , i=1,…, m2}, C2 = {ci | ci N, i=1,…, m2}; 2 : E2↔ C2

Let NISn-1 be a set of all (n-1)-dimensional information spaces.

The triple Sn = (En, μn, Cn) is said to be а numbered information space of range n

(n- dimensional or multi-domain information space) iff the elements of En are numbered

information spaces of range n-1 (belong to the set NISn-1) and n is а function which

87 ITHEA

defines а biunique correspondence between elements of En and elements of the set Cn of

positive integer numbers, i.e.:

En = {ej | ej NISn-1 , j=1,…, mn}, Cn = {cj | cj N, j=1,…, mn}; n : En↔ Cn

The information space Sn, which contains all information spaces of a given application is

called information base of range n. The concept information base without indication of

the range is used as generalized concept to denote all available information spaces.

The sequence A = (cn, cn-1, …, c1), where ci Ci, i=1, …, n is called

multidimensional space address of range n of a basic information element.

Every space address of range m, m < n, may be extended to space address of range n

by adding leading n-m zero codes. Every sequence of space addresses A1, A2, …, Ak,

where k is arbitrary positive number, is said to be a space index.

Every index may be considered as a basic information element, i.e. as a string, and may

be stored in a point of any information space. In such case, it will have a multidimensional

space address, which may be pointed in the other indexes, and, this way, we may build a

hierarchy of indexes. Therefore, every index, which points only to indexes, is called meta-

index.

The approach of representing the interconnections between elements of the information

spaces using (hierarchies) of meta-indexes is called poly-indexation.

Let G = {Si | i=1, …, n} be a set of numbered information spaces.

Let τ = {νij : Si → Sj | i=const, j=1, …, n} be a set of mappings of one "main"

numbered information space Si G | i=const, into the others SJ G, j=1, …, n , and,

in particular, into itself.

The couple: D = (G, τ) is said to be an "aggregate".

It is clear, we can build m aggregates using the set G because every information space SJ

 G, j=1, …, n, may be chosen to be the main information space.

Operations in the MDIM

After presenting the information structures, we need to remember the operations, which

are admissible in the model. In MDIM, we assume that all information elements of all

information spaces exist.

If for any Si : Ei = Ø ˄ Ci = Ø , than it is called empty.

Usually, most of the information elements and spaces are empty. This is very important

for practical realizations.

Artificial Intelligence Methods and Techniques for Business and Engineering Applications 88

Because of the rule that all structures exist, we need only two operations with a BIE:

updating and getting the value and two service operations: getting the length of a BIE

and positioning in a BIE.

Updating, or simply – writing the element, has several modifications with obvious

meaning: writing as a whole; appending/inserting; cutting/replacing a part; deleting.

There is only one operation for getting the value of a BIE, i.e. read a portion from a BIE

starting from given position. We may receive the whole BIE if the starting position is

the beginning of BIE and the length of the portion is equal to the BIE length.

We have only one operation with a single space – clearing (deleting) the space, i.e.

replacing all BIE of the space with Ø (empty BIE). After this operation, all BIE of the

space will have zero length. Really, the space is cleared via replacing it with empty space.

We may provide two operations with two spaces: (1) copying and (2) moving the first

space in the second. The modifications concern how the BIE in the recipient space are

processed. We may have: copy/move with clearing the recipient space; copy/move with

merging the spaces.

The first modifications first clear the recipient space and after that provide a copy or move

operation. The second modifications may have two types of processing: destructive or

constructive. The destructive merging may be "conservative" or "alternative".

In the conservative approach, the BIE of recipient space remains in the result if it is with

none zero length. In the other approach – the BIE from donor space remains in

the result. In the constructive merging the result is any composition of the corresponding

BIE of the two spaces.

Of course, the move operation deletes the donor space after the operation.

Special kind of operations concerns the navigation in a space. We may receive the space

address of the next or previous, empty or non-empty, elements of the space starting

from any given co-ordinates.

The possibility to count the number of non empty elements of a given space is useful for

practical realizations.

Operations with indexes, meta-indexes, and aggregates in the MDIM are based on

the classical logical operations – intersection, union, and supplement, but these

operations are not so trivial. Because of the complexity of the structure of the information

spaces, these operations have two different realizations.

Every information space is built by two sets: the set of co-ordinates and the set of

information elements. Because of this, the operations with indexes, meta-indexes, and

aggregates may be classified in two main types: (1) operations based only on

89 ITHEA

co-ordinates, regardless of the content of the structures; (2) operations, which take in

account the content of the structures:

― The operations based only on the co-ordinates are aimed to support information

processing of analytically given information structures. For instance, such

structure is the table, which may be represented by an aggregate. Aggregates

may be assumed as an extension of the relations in the sense of the model of

Codd [Codd, 1970]. The relation may be represented by an aggregate if

the aggregation mapping is one-one mapping. Therefore, the aggregate is

a more universal structure than the relation and the operations with aggregates

include those of relation theory. What is the new is that the mappings of

aggregates may be not one-one mappings.

― In the second case, the existence and the content of non empty structures

determine the operations, which can be grouped corresponding to the main

information structures: elements, spaces, indexes, and meta-indexes.

For instance, such operation is the projection, which is the analytically given

space index of non-empty structures. The projection is given when some

coordinates (in arbitrary positions) are fixed and the other coordinates vary for all

possible values of coordinates, where non-empty elements exist. Some given

values of coordinates may be omitted during processing.

Other operations are transferring from one structure to another, information search,

sorting, making reports, generalization, clustering, classification, etc.

OntoArM

The program realization of MDIM is called Multi-Domain Access Method (MDAM).

For a long period, it has been used as a basis for organization of various information

bases. There exist several realizations of MDAM for different hardware and/or software

platforms. The most resent one is the FOI Archive Manager – ArM [Markov et al, 2008].

The newest MDAM realization is called ArM32 (for MS Windows). [Markov, 2004]

The OntoArM is an ontological graph oriented access method but not a middleware in

the sense of [Hertel et al, 2009]. It is an upgrade of ArM32.

The OntoArM ontological elements are organized in ontological graph spaces with

variable ranges. There is no limit for the ranges of the spaces. Every ontological element

may be accessed by a corresponding multidimensional space address (coordinates) given

Artificial Intelligence Methods and Techniques for Business and Engineering Applications 90

via NL-word or phrase. Therefore, we have two main constructs of the physical

organizations of OntoArM – ontological spaces and ontological elements.

In OntoArM the length of the ontological element (string) may vary from 0 up to 1G bytes.

There is no limit for the number of strings in an archive but their total length plus internal

indexes could not exceed the limited length of the file system for a single file (4G, 8G,

etc.). There is no limit for the numbers of files in the information base as well as for theirs

dispositions.

OntoArm operations inherited from ArM32

The operations with basic information elements are:

 ArmRead (reading a part or a whole element);

 ArmWrite (writing a part or a whole element);

 ArmAppend (appending a string to an element);

 ArmInsert (inserting a string into an element);

 ArmCut (removing a part of an element);

 ArmReplace (replacing a part of an element);

 ArmDelete (deleting an element);

 ArmLength (returns the length of the element in bytes).

The operations over the spaces are:

 ArmDelSpace (deleting the space),

 ArmCopySpace and ArmMoveSpace (copying/moving the first space in the
second in the frame of one file),

 ArmExportSpace (copying one space from one file the other space, which is
located in other file).

The operations, aimed to serve the navigation in the information spaces return the space

address of the next or previous, empty or non-empty elements of the space starting

from any given co-ordinates. They are ArmNextPresent, ArmPrevPresent, ArmNextEmpty,

and ArmPrevEmpty.

The projections’ operations return the space address of the next or previous non-empty

elements of the projection starting from any given co-ordinates. They are ArmProjNext

and ArmProjPrev.

The operations, which create indexes, are:

 ArmSpaceIndex – returns the space index of the non-empty structures in the
given information space;

 ArmProjIndex – gives the space index of basic information elements of a given
projection

91 ITHEA

The service operations for counting non-empty elements or subspaces are

correspondingly:

 ArmSpaceCount – returns the number of the non-empty structures in given
information space;

 ArmProjCount – gives the number of elements of given (hierarchical or arbitrary)
projection.

OntoArm RDF graph oriented operations

Converting strings into space addresses

There are two internal operations for conversion:

- ArmStr2Addr – converts string to space address. Four ASCII symbols or two
UNICODE 16 symbols form one co-ordinate word. This reduces four,
respectively – two, times the space’ dimensions. The string is extended with
leading zeroes if it is needed.

- ArmAddr2Str – converts space address in ASCII or UNICODE string. The
leading zeroes are not included in the string.

The operations for conversion are not needed for the end-user because they are used by

the upper level operations given below. All OntoArM operations access the information by

NL-addresses (given by a NL-words or phrases). Because of this we will not point

specially this feature.

OntoArM operations for storing and receiving RDF information

There are two main operations for creating the RDF-store:

- OntoArmWrite – writes a buffer (usually NL-string).
- OntoArmRead – reads a buffer (usually NL-string).

It is clear; to work easily with RDF graphs, several additional operations are needed:

- OntoArmAppend (appending a string to an element);
- OntoArmInsert (inserting a string into an element);
- OntoArmCut (removing a part of an element);
- OntoArmReplace (replacing a part of an element);
- OntoArmDelete (deleting an element);
- OntoArmLength (returns the length of the element in bytes).
-

OntoArM operations for graph navigation

The operations, aimed to serve the navigation in the graph are context depended –

the format of the elements is important for the navigation. If the element is an NL-index,

the navigation operation may take its next or previous NL-word for further processing.

If the element has more complicated structure, the navigation operations have to be

accommodated to it. In general, these operations are usual ones for navigating in

the graph structures.

Artificial Intelligence Methods and Techniques for Business and Engineering Applications 92

NL-Addressing for ontology generic schemas

Vertical representation

The simplest RDF generic schema is the triple store with only one table required in

the database. The table contains three columns named Subject, Predicate and Object,

thus reflecting the triple nature of RDF statements. This corresponds to the vertical

representation for storing objects in a table [Agrawal et al, 2001].

The greatest advantage of this schema is that no restructuring is required if the ontology

changes. Adding new classes and properties to the ontology can be realized by a simple

INSERT command in the table. On the other hand, performing a query means searching

the whole database and queries involving joins become very expensive. Another aspect is

that the class hierarchy cannot be modeled in this schema, what makes queries for all

instances of a class rather complex [Hertel et al, 2009].

It is easy to store this schema via OntoArM. The Subject will be the address and all its

couples (Predicate, Object) may be stored at one and the same address. This way with

one operation all arcs of the node of the graph will be received. There exists another

variant of organization where the Predicate may be additional co-ordinate or name of

the archive. In this case, additional operations for reading arcs will be needed.

Nevertheless, in all cases the OntoArM will have linear complexity O(max_L), where

max_L is the maximal length of the word or phrases, used for NL-addressing. In the same

time, the relational table has complexity at least O(n log n), where n is number of all

indexed elements (words), if we will take in account supporting indexing and binary

search. Of course, the memory for binary indexes exceeds the OntoArM memory for

internal indexes. At the end, the time for direct access is many times less then via binary

search. The speed experiments with Firebird relation data base had showed about 30-ty

times for reading and more than 90-ty times for writing in ArM’s favor [Markov et al, 2008].

Normalized triple store

The triple store can be used in its pure form [Oldakowski et al, 2005], but most existing

systems add several modifications to improve performance or maintainability. A common

approach, the so-called normalized triple store, is adding two further tables to store

resource URIs and literals separately as shown in Fig. 2, which requires significantly less

storage space [Harris & Gibbins, 2003]. Furthermore, a hybrid of the simple and

the normalized triple store can be used, allowing storing the values themselves either in

the triple table or in the resources table [Jena2, 2012].

93 ITHEA

Trilpes: Resources: Literals:

Subject Predicate IsLiteral Object

r1 r2 False r3

r1 r4 True l1

… … … …

ID URI

r1 …#1

r2 …#2

… …

ID Value

l1 Value1

… …

… …

Fig. 2. Normalized triple store

In a further refinement, the Triples table can be split horizontally into several tables, each

modeling an RDF(S) property:

― SubConcept for the rdfs:subClassOf property, storing the class hierarchy

― SubProperty for the rdfs:subPropertyOf property, storing the property hierarchy

― PropertyDomain for the rdfs:domain property, storing the domains and

cardinalities of properties

― PropertyRange for the rdfs:range property, storing the ranges of properties

― ConceptInstances for the rdf:type property, storing class instances

― PropertyInstances for the rdf:type property, storing property instances

― AttributeInstances for the rdf:type property, storing instances of properties with

literal values

These tables only need two columns for Subject and Object. The table names implicitly

contain the predicates. This schema separates the ontology schema from its instances,

explicitly models class and property hierarchies and distinguishes between class-valued

and literal-valued properties [Broekstra, 2005; Gabel et al, 2004].

The normalized triple store is ready for representing via OntoArM. Only what we have to

do is to take in account the representing all arcs from a node by one space NL-index and

the representing all properties as an aggregate. The Subject will be the NL-address and

only Object will be saved. Possibility to concatenate all Objects for a Subject reduces

the size of memory and time. There are different approaches for building the aggregate –

using additional co-ordinate to the Subjects’ values or to use separate archives for storing

the information.

In all cases, the OntoArM has linear complexity O(max_L), the relation data base –

at least O(n log n).

Artificial Intelligence Methods and Techniques for Business and Engineering Applications 94

NL-Addressing for ontology specific schemas

Horizontal representation

Ontology specific schemas are changing when the ontology changes, i.e. when classes or

properties are added or removed. The basic schema consists of one table with one

column for the instance ID, one for the class name and one for each property in the

ontology. Thus, one row in the table corresponds to one instance. This schema is

corresponding to the horizontal representation [Agrawal et al, 2001] and obviously has

several drawbacks: large number of columns, high sparsity, inability to handle multi-

valued properties and the need to add columns to the table when adding new properties

to the ontology, just to name a few.

Horizontally splitting this schema results in the so called one-table-per class schema - one

table for each class in the ontology is created. A class table provides columns for all

properties whose domain contains this class. This is tending to the classic entity-

relationship-model in database design and benefits queries about all attributes and

properties of an instance.

However, in this form the schema still lacks the ability to handle multi-valued properties,

and properties that do not define an explicit domain must then be included in each table.

Furthermore, adding new properties to the ontology again requires restructuring existing

tables [Hertel et al, 2009].

The horizontal representation is an example of a set of aggregates in the sense of

OntoArM. Storing every class in a separate archive gives possibility to add properties

without restructuring existing tables because the aggregate may be described by a meta-

index. Again, NL-addressing in OntoArM has linear complexity O(max_L), the relation

data base representation – at least O(n log n).

Decomposition storage model

Another approach is vertically splitting the schema, what results in the one-table-per-

property schema, also called the decomposition storage model.

In this schema one table for each property is created with only two columns for Subject

and Object. RDF(S) properties are also stored in such tables, e.g. the table for rdf:type

contains the relationships between instances and their classes.

This approach is reflecting the particular aspect of RDF that properties are not defined

inside a class. However, complex queries considering many properties have to perform

many joins, and queries for all instances of a class are similarly expensive as in

the generic triple schema [Hertel et al, 2009].

95 ITHEA

In practice, a hybrid schema combining the table-per-class and table-per property

schemas is used to benefit from the advantages of both of them. This schema contains

one table for each class, only storing there a unique ID for the specific instance.

This replaces the modeling of the rdf:type property. For all other properties tables are

created as described in the table-per-property approach (Fig. 3) [Pan & Heflin, 2004].

Thus, changes to the ontology do not require changing existing tables, as adding a new

class or property results in creating a new table in the database.

ClassA: Property1: ClassB:

ID

…#1

…

Subject Object

…#1 …#3

… …

ID

…#3

…

Fig. 3. Hybrid schema

A possible modification of this schema is separating the ontology from the instances.

In this case, only instances are stored in the tables described above.

Information about the ontology schema is stored separately in four additional tables Class,

Property, SubClass and SubProperty [Alexaki et al, 2001]. These tables can be further

refined storing only the property ID in the Property table and the domain and range of the

property in own tables Domain and Range [Broekstra, 2005]. This approach is similar to

the refined generic schema, where the ontology is stored the same way and only

the storage of instances is different.

To reduce the number of tables, single-valued properties with a literal as range can be

stored in the class tables. Adding new attributes would then require changing existing

tables. Another variation is to store all class instances in one table called Instances.

This is especially useful for ontologies where there is a large number of classes with only

few or no instances [Alexaki et al, 2001].

The decomposition storage model is memory and time consuming due to duplicating

the information and generation of too much binary search indexes. It is very near to

the OntoArM style and may be directly implemented using NL-addressing but this will be

not efficient. NL-addressing permits new possibilities due to omitting of explicit given

information – names as well as binary indexes. The feature tables may be replaced by

NL-addressing access to corresponded points of the information space where all

information about given Subject will exist. This way we will reduce the needed memory

and time. At the end, let point again, that NL-addressing has linear complexity O(max_L)

and the relation data base representation – at least O(n log n).

Artificial Intelligence Methods and Techniques for Business and Engineering Applications 96

Conclusion

NL-addressing is a possibility to access information using natural language words as

addresses of the information stored in the multi-dimensional numbered information

spaces. For this purpose the internal encoding of the letters is used to generate

corresponded co-ordinates. The tool for working in such style is named OntoArM. Its main

principles, functions and using for storing RDF graph were outlined in this paper.

There are further issues not pointed above, which may require an extension of the triple-

based schemas and thus are affecting the design of the database: (1) Storing multiple

ontologies in one database; (2) Storing statements from multiple documents in one

database.

Both points are concerning the aspect of provenance, which means keeping track of the

source an RDF statement is coming from. When storing multiple ontologies in one

database it should be considered that classes, and consequently the corresponding

tables, can have the same name. Therefore, either the tables have to be named with

a prefix referring to the source ontology [Pan & Heflin, 2004] or this reference is stored in

an additional attribute for every statement. A similar situation arises for storing multiple

documents in one database. Especially, when there are contradicting statements it is

important to know the source of each statement. Again, an additional attribute denoting

the source document helps solving the problem [Pan & Heflin, 2004].

The concept of named graphs [Caroll et al, 2004] is including both issues. The main idea

is that each document or ontology is modeled as a graph with a distinct name, mostly

a URI. This name is stored as an additional attribute, thus extending RDF statements from

triples to so-called quads. For the database schemas described above this means adding

a fourth column to the tables and potentially storing the names of all graphs in a further

table.

All these problems can be solved by OntoArM, because a separated ontology may be

represented in one single archive. In addition, the NL-addressing permits accessing

the equal names in different ontologies without any additional indexing or using of

pointers, identification and etc. Only the NL-words or phrases are enough to access all

information in all existing ontologies (resp. graphs).

The linear complexity O(max_L) of NL-addressing is very important for realizing very large

triple stores.

OntoArM is implemented in the Institute of Cybernetics V.M. Glushkov at the National

Academy of Sciences of Ukraine, Kiev (IC NASU). It has been used for storing ontology

information about multiple documents from own data bases as well as from different

internet sources.

97 ITHEA

The further work is concerned to implementing OntoArM for storing multiple ontologies in

the libraries of the “Instrumental Complex with Ontological Purpose”, which is under

developing in the IC NASU.

Acknowledgements

The paper is partially financed by the project ITHEA XXI of the Institute of Information

Theories and Applications FOI ITHEA and the Consortium FOI Bulgaria (www.ithea.org,

www.foibg.com).

Bibliography

[Agrawal et al, 2001] Agrawal R, Somani A, Xu Y Storage and querying of e-commerce data.
In: Proceedings of the 27th Conference on Very Large Data Bases, VLDB 2001,Roma, Italy.

[Alexaki et al, 2001] Alexaki S, Christophides V, Karvounarakis G, Plexousakis D, Tolle K (2001)
The ICS-FORTH RDFSuite: Managing voluminous RDF description bases. In: Proceedings of
the 2nd International Workshop on the Semantic Web, Hongkong.

[Broekstra, 2005] Broekstra J. Storage, querying and inferencing for Semantic Web languages.
PhD Thesis, Vrije Universiteit, Amsterdam (2005).

[Caroll et al, 2004] Caroll J, Bizer C, Hayes P, Stickler P (2004) Semantic Web publishing using
named graphs. In: Proceedings of Workshop on Trust, Security, and Reputation on the
SemanticWeb, at the 3rd International SemanticWeb Conference, ISWC 2004, Hiroshima,
Japan.

[Codd, 1970] Codd, E.: A relation model of data for large shared data banks. Magazine
Communications of the ACM, 13/6, 1970, pp.377 387.

[Gabel et al, 2004] Gabel T, Sure Y, Voelker J (2004) KAON – An overview. Insititute AIFB,
University of Karlsruhe. http://kaon.semanticweb.org/main kaonOverview.pdf.

[Harris & Gibbins, 2003] Harris S, Gibbins N 3store: Efficient bulk RDF storage. In: Proceedings of
the 1st International Workshop on Practical and Scalable Semantic Systems, PSSS 2003,
Sanibel Island, FL, USA.

[Hayes, 2004] Patrick Hayes, Editor, RDF Semantics, W3C Recommendation, 10 February 2004,
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/ . Latest version available at
http://www.w3.org/TR/rdf-mt/ .

[Hertel et al, 2009] Alice Hertel, Jeen Broekstra, and Heiner Stuckenschmidt. RDF Storage and
Retrieval Systems. In: S. Staab and R. Studer (eds.), Handbook on Ontologies, International
Handbooks on Information Systems, DOI 10.1007/978-3-540-92673-3, Springer-Verlag Berlin
Heidelberg 2009. pp 489-508.

[Jena2, 2012] Jena2 database interface – database layout.
http://jena.sourceforge.net/DB/layout.html. (visited at 22.08.2012)

[Klyne & Carroll, 2004] Graham Klyne and Jeremy J. Carroll, Editors, Resource Description
Framework (RDF): Concepts and Abstract Syntax, W3C Recommendation, 10 February 2004,
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/ . Latest version available at
http://www.w3.org/TR/rdf-concepts/ .

[Markov et al, 2008] Markov K, Ivanova, K., Mitov, I., & Karastanev, S. Advance of the access
methods. Int. J. Information Technologies and Knowledge, 2/2, 2008, pp.123-135

[Markov, 1984] Кr.Markov. А Multi-domain Access Method. // Proceedings of the International
Conference on Computer Based Scientific Research. Plovdiv, 1984. pp. 558-563.

http://kaon.semanticweb.org/main%20kaonOverview.pdf
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://www.w3.org/TR/rdf-mt/
http://jena.sourceforge.net/DB/layout.html
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/rdf-concepts/

Artificial Intelligence Methods and Techniques for Business and Engineering Applications 98

[Markov, 2004] Markov, K. Multi-domain information model. Int. J. Information Theories and
Applications, 11/4, 2004, pp.303-308.

[Mitov et al, 2009] Mitov, I., Ivanova, K., Markov, K., Velychko, V., Vanhoof. K., Stanchev,
P. "PaGaNe" – A classification machine learning system based on the multidimensional
numbered information spaces. In World Scientific Proc. Series on Computer Engineering and
Information Science, No.2, pp.279 286.

[Oldakowski et al, 2005] Oldakowski R, Bizer C, Westphal D RAP: RDF API for PHP. In:
Proceedings of Workshop on Scripting for the Semantic Web, SFSW 2005, at 2nd European
Semantic Web Conference, ESWC 2005, Heraklion, Greece.

[Pan & Heflin, 2004] Pan Z, Heflin J (2004) DLDB: Extending relational databases to support
Semantic Web queries. Technical Report LU-CSE-04-006, Department of Computer Science
and Engineering, Lehigh University.

Authors' Information

Krassimira Ivanova – University of National and World Economy, Sofia,
Bulgaria
e-mail: krasy78@mail.bg
Major Fields of Scientific Research: Data Mining

Vitalii Velychko – Institute of Cybernetics, NASU, Kiev, Ukraine
e-mail: Velychko@rambler.ru
Major Fields of Scientific Research: Data Mining, Natural Language
Processing

Krassimir Markov – Institute of Mathematics and Informatics at BAS,
Sofia, Bulgaria;
e-mail: markov@foibg.com
Major Fields of Scientific Research: Multi-dimensional information
systems, Data Mining

mailto:krasy78@mail.bg
mailto:Velychko@rambler.ru
mailto:markov@foibg.com

