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Abstract: The main purpose of this paper is to popularize Danzer’s power complex construction and establish some

new results about covering maps between two power complexes. Power complexes are cube-like combinatorial

structures that share many structural properties with higher-dimensional cubes and cubical tessellations on manifolds.

Power complexes that are also abstract polytopes have repeatedly appeared somewhat unexpectedly in various

contexts, although often under a different name. However, the non-polytope case is largely unexplored.
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1 Introduction

Combinatorial structures built from cubes or cube-like elements have attracted a lot of attention in geometry,

topology, and combinatorics. In this paper we study a particularly interesting class of cube-like structures known as

power complexes. These power complexes were first discovered by Danzer in the early 1980’s (see [7; 15; 22]).

Power complexes that are also abstract polytopes have repeatedly appeared somewhat unexpectedly in various

contexts, although often under a different name; for example, see Coxeter [4], Effenberger-Kühnel [9], Kühnel [13],

McMullen-Schulte [15, Ch. 8] and Ringel [20]. However, most power complexes are not abstract polytopes, and

have not been very well researched.

The main purpose of this paper is to popularize Danzer’s power complex construction and establish some new

results about covering maps between power complexes. Our discussion is in terms of incidence complexes, a

class of ranked incidence structures closely related to polytopes, ranked partially ordered sets, and incidence

geometries (Danzer-Schulte [8; 21]). In Section 2 we begin by reviewing key facts about incidence complexes

and their automorphism groups. Then in Section 3 we define power complexes and establish some of their basic

properties. A number of applications of power complexes are summarized in Section 4. Finally, Section 5 describes

fairly general circumstances that guarantee the existence of covering maps between two power complexes.

2 Incidence complexes

An incidence complex has some of the key combinatorial properties of the face lattice of a convex polytope; in

general, however, an incidence complex need not be a lattice, need not be finite, need not be an abstract polytope,

and need not admit any familiar geometric realization. The notion of an incidence complex is originally due to

Danzer [7; 8] and was inspired by Grünbaum [11]. Incidence complexes can also be viewed as incidence geometries

or diagram geometries with a linear diagram (see Buekenhout-Pasini [3], Leemans [14], Tits [24]), although here we

study them from the somewhat different discrete geometric and combinatorial perspective of polytopes and ranked

partially ordered sets.

Following Danzer-Schulte [8] (and [21]), an incidence complexK of rank k, or briefly a k-complex , is defined by the

properties (I1),. . . ,(I4) below. The elements of K are called faces of K.

(I1)K is a partially ordered set with a unique least face and a unique greatest face.

(I2) Every totally ordered subset ofK is contained in a (maximal) totally ordered subset with exactly k+2 elements,
a flag, of K.
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These two conditions make K into a ranked partially ordered set, with a strictly monotone rank function with range

{−1, 0, . . . , k}. A face of rank i is called an i-face; often Fi will indicate an i-face. The least face and greatest

face are the improper faces of K and have ranks −1 and k, respectively; all other faces of K are proper faces of
K. A face of rank 0, 1 or n − 1 is also called a vertex , an edge or a facet, respectively. We let F(K) denote the
set of flags of K.

(I3) K is strongly flag-connected , meaning that if Φ and Ψ are two flags of K, then there is a finite sequence of
flags Φ = Φ0,Φ1, . . . ,Φm−1,Φm = Ψ, all containing Φ ∩Ψ, such that successive flags are adjacent (differ in
just one face).

Call two flags i-adjacent , for i = 0, . . . , k−1, if they are adjacent and differ exactly in their i-faces. With this notion
of adjacency, F(K) becomes the flag graph for K and acquires a natural edge-labelling where edges labelled i
represent pairs of i-adjacent flags.

Our last defining condition is a homogeneity requirement for the numbers of i-adjacent flags for each i.

(I4) There exist cardinal numbers c0, . . . , ck−1 > 2, for our purposes taken to be finite, such that, whenever F is
an (i− 1)-face and G a (i+ 1)-face with F < G, the number of i-facesH with F < H < G equals ci.

If F is an i-face and G a j-face with F < G, we call

G/F := {H ∈ K |F 6 H 6 G}

a section of K. It follows that G/F is an incidence complex in its own right, of rank j − i − 1 and with cardinal
numbers ci+1, . . . , cj−1. It is useful to identify a j-face G of K with the j-complex G/F−1. Likewise, if F is an

i-face, the (k − i− 1)-complex Fk/F is the co-face of F inK; if F is a vertex (and i = 0), this is also called the
vertex-figure at F .

An abstract k-polytope, or simply k-polytope, is an incidence complex of rank k such that ci = 2 for i = 0, . . . , k−
1 (see McMullen-Schulte [15]). Thus a polytope is a complex in which every flag has precisely one i-adjacent flag
for each i. For polytopes, the last condition (I4) is also known as the diamond condition.

The automorphism group Γ(K) of an incidence complexK consists of all order-preserving bijections ofK. We say
that K is regular if Γ(K) is transitive on the flags of K. Note that a regular complex need not have a simply flag-
transitive automorphism group (in fact, Γ(K) may not even have a simply flag-transitive subgroup), so in general
Γ(K) has nontrivial flag-stabilizer subgroups. However, the group of a regular polytope is always simply flag-
transitive.

It was shown in [21] (for a proof for polytopes see also [15, Ch. 2]) that the group Γ := Γ(K) of a regular k-complex
K has a well-behaved system of generating subgroups. Let Φ := {F−1, F0, . . . , Fk} be a fixed, or base flag, of

K, where Fi designates the i-face in Φ for each i. For each Ω ⊆ Φ let ΓΩ denote the stabilizer of Ω in Γ. Then
ΓΦ is the stabilizer of the base flag Φ, and Γ∅ = Γ. Moreover, for i = −1, 0, . . . , k set

Ri := ΓΦ\{Fi} = 〈ϕ ∈ Γ | Fjϕ = Fj for all j 6= i〉.

Then each Ri contains ΓΦ, and coincides with ΓΦ when i = −1 or k; in particular,

ci := |Ri : ΓΦ| (i = 0, . . . , k − 1). (1)

Moreover, these subgroups have the following commutation property:

Ri · Rj = Rj · Ri (−1 6 i < j − 1 6 k − 1). (2)

Note here that Ri and Rj commute as subgroups, not generally at the level of elements.

The groups R−1, R0, . . . , Rk form a distinguished system of generating subgroups of Γ, that is,

Γ = 〈R−1, R0, . . . , Rk〉. (3)



56 Mathematics of Distances and Applications

Here the subgroups R−1 and Rk are redundant when k > 0. More generally, if Ω is a proper subset of Φ, then

ΓΩ = 〈Ri | −1 6 i 6 k, Fi 6∈ Ω〉.

For each nonempty subset I of {−1, 0, . . . , k} define ΓI := 〈Ri | i ∈ I〉; and for I = ∅ define ΓI := R−1 =
ΓΦ. (As a warning, the notation Γ∅ can have two meanings, either as ΓΩ withΩ = ∅ or ΓI with I = ∅; the context
should make it clear which of the two is being used.) Thus

ΓI = Γ{Fj |j 6∈I} (I ⊆ {−1, 0, . . . , k});

or equivalently,

ΓΩ = Γ{i|Fi 6∈Ω} (Ω ⊆ Φ).

The automorphism group Γ ofK and its distinguished generating system satisfy the following important intersection
property :

ΓI ∩ ΓJ = ΓI∩J (I, J ⊆ {−1, 0, . . . , k}). (4)

The combinatorial structure of K can be completely described in terms of the distinguished generating system of

Γ(K). In fact, bearing in mind that Γ acts transitively on the faces of each rank, the partial order is given by

Fiϕ 6 Fjψ ←→ ψ−1ϕ ∈ Γ{i+1,...,k}Γ{−1,0,...,j−1} (−1 6 i 6 j 6 k; ϕ,ψ ∈ Γ),

or equivalently,

Fiϕ 6 Fjψ ←→ Γ{−1,0,...,k}\{i}ϕ ∩ Γ{−1,0,...,k}\{j}ψ 6= ∅ (−1 6 i 6 j 6 k; ϕ,ψ ∈ Γ). (5)

Conversely, if Γ is any group with a system of subgroups R−1, R0, . . . , Rk such that (2), (3) and (4) hold, and

R−1 = Rk, then Γ is a flag-transitive subgroup of the full automorphism group of a regular incidence complex K
of rank k (see again [21], or [15, Ch. 2] for polytopes). The i-faces of K are the right cosets of Γ{−1,0,...,k}\{i} for

each i, and the partial order is given by (5). The homogeneity parameters c0, . . . , ck−1 are determined by (1).

For abstract regular polytopes, these structure results lie at the heart of much research activity in this area (see

[15]). In this case the flag stabilizer ΓΦ is the trivial group, and each nontrivial subgroup Ri (with i 6= −1, k) has
order 2 and is generated by an involutory automorphism ρi that maps Φ to its unique i-adjacent flag. The group
of an abstract regular polytope is then a string C-groups, meaning that the distinguished involutory generators

ρ0, . . . , ρk−1 satisfy both the commutativity relations typical of a Coxeter group with string diagram, and the

intersection property (4).

3 Power complexes

In this section we briefly review the construction of the power complexes nK, an interesting family of incidence

complexes with n vertices on each edge, and with each vertex-figure isomorphic toK (see [22], and [15, Section 8D]

for n = 2). These power complexes were first discovered by Danzer in the early 1980’s; however, the construction
announced in [7] was never published by Danzer, and first appeared in print in [22]. The power complexes nK, with

n = 2 and K a polytope, are abstract polytopes and have attracted a lot of attention (see [15, Ch. 8]). In a sense,
these power complexes are generalized cubes; and in certain cases (when K has simplex facets) they can also be

viewed as cubical complexes (see [2; 18]). We briefly review some applications in Section 4.

To begin with, we say that an (incidence) complex K is vertex-describable if its faces are uniquely determined by

their vertex-sets. A complex is vertex-describable if and only if its underlying face poset can be represented by a

family of subsets of the vertex-set ordered by inclusion. If a complex K is a lattice, then K is vertex-describable.

For example, the torus map K = {4, 4}(s,0) is vertex-describable if and only if s > 3. The faces of a vertex-
describable complex are again vertex-describable.
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Now let n > 2 and define N := {1, . . . , n}. Suppose K is a finite vertex-describable (k − 1)-complex with v
vertices and vertex-set V := {1, . . . , v}. Then P := nK will be a finite k-complex with vertex-set

Nv =

v
⊗

i=1

N, (6)

the cartesian product of v copies of N ; its nv vertices are written as row vectors ε := (ε1, . . . , εv). Now recall
that, since K is vertex-describable, we may view the faces of K as subsets of V . With this in mind we take as

j-faces of P , for any (j − 1)-face F of K and any vector ε = (ε1, . . . , εv) in N
v , the subsets F (ε) of Nv

defined by

F (ε) := {(η1, . . . , ηv) ∈ N
v
| ηi = εi if i 6∈ F} (7)

or, abusing notation, the cartesian product

F (ε) := (
⊗

i∈F

N)× (
⊗

i6∈F

{εi}).

In other words, the j-face F (ε) of P consists of the vectors inNv that coincide with ε precisely in the components

determined by the vertices of K not lying in the (j − 1)-face F of K. It follows that, if F , F ′ are faces of K and

ε = (ε1, . . . , εv), ε
′ = (ε1, . . . , εv) are vectors in N

v , then F (ε) ⊆ F ′(ε′) if and only if F 6 F ′ in K and

εi = ε′i for each i not contained in F
′.

It can be shown that the set of all faces F (ε), where F is a face of K and ε a vector in Nv , partially ordered by

inclusion (and supplemented by the empty set as least face), is an incidence complex of rank k. This is the desired

complex P = nK.

The following theorem summarizes a number of key properties of power complexes.

Theorem 3.1. Let K be a finite incidence complex of rank k − 1 with v vertices, and let K be vertex-describable.
Then the power complex P := nK has the following properties.

(a) P is an incidence complex of rank k with vertex-set Nv and each vertex-figure isomorphic toK.

(b) If F is a (j − 1)-face of K and F := F/F−1 is the (j − 1)-complex determined by F , then the j-faces of P
of the form F (ε) with ε inNv are isomorphic to the power complex nF of rank j.

(c) Γ(P) contains a subgroup Λ isomorphic to Sn ≀ Γ(K) = Sv
n ⋊ Γ(K), the wreath product of Sn and Γ(K)

defined by the natural action of Γ(K) on the vertex-set of K. Moreover, Λ acts vertex-transitively on P and has
vertex stabilizers isomorphic to Sn−1 ≀ Γ(K).

(d) If K is regular, then so is P . In this case the subgroup Λ of Γ(P) of part (c) acts flag-transitively on P ; in
particular, if n = 2 and K is polytope, then Λ = Γ(P).

Proof. For power complexes 2K regular polytopesK these facts are well-known (see [15, Section 8D] and [19; 22]).
Here we briefly outline the proof for general power complexes, as no general proof has been published anywhere.

So, as before, let K be a finite vertex-describable complex of rank k − 1.

Begin by making the following important observation regarding inclusion of faces in P : if F (ε) ⊆ F ′(ε′), with
F,F ′, ε, ε′ as above, then F ′(ε′) = F ′(ε). Thus, in designating the larger face we may take ε′ = ε. It follows

that every face containing a given vertex εmust necessarily be of the formF (ε) withF ∈ K, and that any two such
faces F (ε) and F ′(ε) are incident in P if and only if F and F ′ are incident in K. As an immediate consequence,

P must have vertex-figures isomorphic to K. It is straightforward to prove that P actually is an incidence complex

of rank k.

For part (b), let F be a (j − 1)-face of K with vF vertices and vertex-set VF , and let ε be a vector in N
v . Now,

if F ′(ε′) is any face of P with F ′(ε′) ⊆ F (ε) in P , then necessarily F ′
6 F in K and ε′i = εi for each

i 6∈ F ; in other words, the vectors ε and ε′ agree on each component representing a vertex i of K that lies

outside F . It follows that the components of vectors in Nv corresponding to vertices i of K outside of F do not

matter in determining the structure of the j-face F (ε) of P . Hence, if we omit these components and simply write
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ηF := (ηi)i∈F for the “trace" of a vector η on F , then ηF lies in the cartesian product N
vF :=

⊗

i∈VF
N , and

the faces F (ε) and F ′(ε′) of P can safely be designated by F (εF ) and F ′(ε′F ), respectively. Then, in particular,
F (εF ) = NvF is the unique greatest face of nF , and F ′(ε′F ) becomes a face of nF . Moreover, the partial order
on the j-face F (ε) of P is just the standard inclusion of faces in nF . Thus, as a complex, F (ε) is isomorphic to
nF . This proves part (b).

The automorphism group Γ(P) always contains a subgroup Σ isomorphic to Sv
n, the direct product of v copies of

the symmetric group Sn. In fact, for each i = 1, . . . , v, the symmetric group Sn can be viewed as acting on the i
th

component of the vectors inNv (while leaving all other components unchanged), and this action on the vertex-set

Nv induces an action as a group of automorphisms on P . In particular, Σ acts vertex-transitively on P , so the
same holds for Γ(P) as well.

Moreover, Γ(K) is naturally embedded in Γ(P) as a subgroup of the vertex-stabilizer of ε = (0, . . . , 0) in Γ(P).
In fact, each automorphism ϕ ofK determines an automorphism ϕ̂ of P as follows. Define ϕ̂ on the set of vertices

η = (η1, . . . , ηv) by
1

(η)ϕ̂ := (η(1)ϕ, . . . , η(v)ϕ) =: ηϕ,

and more generally on the set of faces F (η) of P by

F (η)ϕ̂ := (Fϕ)(ηϕ).

Then it is straightforward to verify that ϕ̂ is indeed an automorphism of P , and that ϕ̂ fixes ε = (0, . . . , 0). It
follows that the two subgroups Σ and Γ(K) together generate a subgroup Λ of Γ(P) isomorphic to Sn ≀ Γ(K) ∼=
Sv

n ⋊ Γ(K). Clearly, Λ acts vertex-transitively and has vertex-stabilizers isomorphic to Sn−1 ≀Γ(K). Now part (c)
follows.

Finally, suppose K is regular. Then Λ acts flag-transitively on P , and so does Γ(P). Thus P is regular. If n = 2
and K is a regular polytope, then P is also a regular polytope and Γ(P) = Λ. This proves part (d).

We do not know of an example of a power complex nK, with K regular, where the full automorphism group of nK

is strictly larger than its subgroup Sn ≀ Γ(K).

Figure 1: Combinatorics of the complex square γ3
2

In Section 4, we discuss a number of interesting applications of the nK construction. Here we just describe the

most basic example obtained when K = αv−1 (see [5]), the (v − 1)-simplex (with v vertices). In this case nK is
combinatorially isomorphic to the complex v-cube

γn
v = n{4}2{3}2 · · · 2{3}2

in v-dimensional unitary complex v-space Cv , that is, nαv−1 = γn
v . The unitary complex symmetry group of γ

n
v

is isomorphic to Cn ≀ Sv (see Coxeter [6] and Shephard [23]). However, the combinatorial automorphism group of

1Throughout we write maps on the right.
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γn
v is much larger when n > 2, and includes a subgroup isomorphic to Sn ≀ Sv . The case n = 2 always gives the
ordinary real v-cube γv := γ2

v = {4, 3v−2
} (see [5]).

The combinatorics of the complex square γ3
2 = 3{4}2 in C

2 (obtained when v = 2 and n = 3) is illustrated in
Figure 1; there are 9 vertices (denoted i j with i, j = 1, 2, 3), each contained in 2 edges (drawn as 3-cycles), as
well as 6 edges, each containing 3 vertices.

Now let K be an arbitrary incidence complex of rank k, and let 0 6 j 6 k − 1. The j-skeleton skelj(K) of K is
the incidence complex, of rank j + 1, whose faces of rank less than or equal to j are those of K, with the partial
order inherited from K; as greatest face, of rank j + 1, we may simply take the greatest face of K.

The following lemma says that taking skeletons and taking power complexes are commuting operations.

Lemma 3.2. Let K be a finite vertex-describable k-complex, let 0 6 j 6 k − 1, and let n > 2. Then

skelj+1(n
K) = nskelj(K).

Proof. The proof is straightforward. First note that a skeleton of a vertex-describable complex is again vertex-

describable, with the same vertex set as the underlying complex. The proper faces of skelj+1(n
K) are the faces

F (ε) of nK where F has rank at most j and ε lies in Nv . On the other hand, the proper faces of nskelj(K) are

of the form F (ε) where F is a face of skelj(K) of rank at most j and ε lies inNv . But the faces of K of rank at

most j are precisely the faces of skelj(K) of rank at most j. Now the lemma follows.

We conclude this section with a nice application of the lemma. Suppose n > 2 and K is the (unique) complex of
rank 1 with v vertices. Now identifying K with skel0(αv−1) we then have

nK = nskel0(αv−1) = skel1(n
αv−1) = skel1(γ

n
v ). (8)

Thus the 2-complex nK is isomorphic to the 1-skeleton of the unitary complex v-cube γn
v described above.

4 Applications

In this section we briefly review a number of interesting applications of the power complex construction that have

appeared in the literature.

First suppose n = 2 and K = {q} is a q-gon with 3 6 q < ∞. It was shown in [15, Ch. 8D] that 2{q} is
isomorphic to Coxeter’s regular map {4, q | 4⌊q/2⌋−1

} in the 2-skeleton of the ordinary q-cube γq = {4, 3q−2
},

whose edge-graph coincides with that of the cube (see [4, p. 57]). In fact, the method of construction directly

produces a realization of 2{q} in the 2-skeleton of γq , which is identical with the realization outlined in [4]. This

map and its realizations were rediscovered several times in the literature. For example, Ringel [20] and Beineke-

Harary [1] established that the genus 2q−3(q − 4) + 1 of Coxeter’s map is the smallest genus of any orientable
surface into which the edge-graph of the q-cube can be embedded without self-intersections. It is rather surprising

that each map {4, q | 4⌊q/2⌋−1
}, as well as its dual {q, 4 | 4⌊q/2⌋−1

}, can also be embedded as a polyhedron

without self-intersections in ordinary 3-space (see McMullen-Schulz-Wills [17] and McMullen-Schulte-Wills [16]).
When q > 12, the genus of this polyhedron exceeds the number of vertices, 2q , of {4, q | 4[q/2]−1

}, which is

somewhat hard to visualize.

When n = 2 andK is an abstract 2m-polytope given by a neighborly simplicial (2m−1)-sphere, the corresponding
power complex 2K gives anm-Hamiltonian 2m-manifold embedded as a subcomplex of a higher-dimensional cube
(see Kühnel-Schulz [12], Effenberger-Kühnel [9]). Recall here that a polytope is neighborly if any two of its vertices

are joined by an edge. The m-Hamiltonicity then refers to the distinguished property that 2K contains the full
m-skeleton of the ambient cube. In this sense, Coxeter’s map {4, q |4⌊q/2⌋−1

} gives a 1-Hamiltonian surface.

The case when n = 2 and K is an (abstract) regular polytope has inspired a number of generalizations of the 2K

construction that have proved important in the study of universality questions and extensions of regular polytopes

(see [15, Ch. 8]). A particularly versatile generalization is to polytopes 2K,D , where K is a vertex-describable
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regular k-polytope with v vertices, and D is a Coxeter diagram on v nodes admitting a suitable action of Γ(K) as
a group of diagram symmetries. The corresponding Coxeter groupW (D) then can be extended by Γ(K) to obtain
the automorphism groupW (D) ⋉ Γ(K) of a regular (k + 1)-polytope denoted 2K,D. This polytope is generally

infinite, and its vertex-figures are isomorphic to K. When D is the trivial diagram, without branches, on the vertex

set of K, the (k + 1)-polytope 2K,D is isomorphic to the power complex 2K and the Coxeter groupW (D) is just
Cv

2 . This provides an entirely different construction of power complexes 2
K based on regular polytopes K.
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Figure 2: The torus map {3, 6}(3,0)

The polytopes 2K,D are very useful in the study of universal regular polytopes, as the following example illustrates

(again, see [15, Ch. 8]). Let K be a (polytopal) regular map of type {3, r} on a surface, for instance, a torus map
{3, 6}(b,0) or {3, 6}(b,b) (see Figure 2). Suppose we wish to investigate regular 4-polytopes (if they exist) with
cubes {4, 3} as facets and with copies ofK as vertex-figures. In particular this would involve determining when the
universal such structure, denoted

U := {{4, 3},K},

is a finite polytope. It turns out that this universal polytope U always exists (for any K), and that U = 2K,D

for a certain Coxeter diagram D depending on K (see [15, Thm. 8E10]). In particular, U is finite if and only if

K is neighborly. In this case U = 2K and Γ(U) = Cv
2 ⋉ Γ(K) (and D is trivial). For example, if K is the

hemi-icosahedron {3, 5}5 (with group [3, 5]5), then

U = {{4, 3}, {3, 5}5} = 2{3,5}5

and

Γ(U) = C2 ≀ [3, 5]5 = C6
2 ⋉ [3, 5]5.

5 Coverings

In this section we investigate coverings of power complexes. We begin with some terminology; see [15, Ch. 2D] for

similar notions for abstract polytopes.

Let K and L be (incidence) complexes of rank k. A map γ : K → L is called a homomorphism if γ preserves
incidence in one direction; that is, Fγ 6 Gγ in L whenever F 6 G in K. (Automorphisms are bijections that

are order preserving in both directions.) A homomorphism γ is a rap-map if γ is rank preserving and adjacency

preserving; that is, faces of K are mapped to faces of L of the same rank, and pairs of adjacent flags of K are

mapped onto pairs of adjacent flags of L. A surjective rap-map γ is called a covering (map). Similarly we call a

homomorphism γ : K → L a weak rap-map if γ is rank preserving and weakly adjacency preserving, meaning
that γ maps a pair of adjacent flags of K onto a pair of flags of L that are adjacent or identical.

Figure 3 illustrates an example of a covering γ : K → L between a hexagon K with vertices 1, . . . , 6, and a
triangle L with vertices 1, 2, 3, given by i, i + 3 7→ i for i = 1, 2, 3. The edges are mapped by {i, i + 1},
{i+ 3, i + 4} 7→ {i, i + 1}. Thus γ wraps the hexagon twice around the triangle.
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Figure 3: A hexagon wrapped around the triangle

Returning to the general discussion, let K be a k-complex and Σ be a subgroup of Γ(K). Denote the set of orbits
ofΣ inK byK/Σ, and the orbit of a face F ofK by F ·Σ. Then introduce a partial ordering onK/Σ as follows: if
̂F, ̂G ∈ K/Σ, then ̂F 6 ̂G if and only if ̂F = F ·Σ and ̂G = G ·Σ for some faces F andG ofK with F 6 G.

The set K/Σ together with this partial order is the quotient of K with respect to Σ. The triangle in Figure 3 is a
quotient of the hexagon obtained by identifying opposite vertices; here Σ is generated by the central involution in
D6, the group of the hexagon.

Coverings nK → mL with n > m.

The following theorem says that coverings between (vertex-describable) incidence complexes naturally induce

coverings or weak coverings between the corresponding power complexes.

Theorem 5.3. Let K and L be finite vertex-describable incidence complexes of rank k, and let γ : K → L be a
covering. Moreover, let n > m > 2 and f : {1, . . . , n} → {1, . . . ,m} be a surjective mapping. Then γ and
f induce a weak covering πγ,f : nK → mL between the power complexes nK and mL. Moreover, πγ,f is a

covering if and only if f is a bijection (and n = m).

Proof. Suppose V (K) := {1, . . . , v(K)} and V (L) := {1, . . . , v(L)} are the vertex sets of K and L,
respectively. (It will be clear from the context if a label j refers to a vertex ofK or a vertex ofL.) Then v(L) 6 v(K)
since there is a covering map from K to L. DefineN := {1, . . . , n} andM := {1, . . . ,m}.

First note that a typical flag in nK has the form

Φ(ε) := {∅, ε, F0(ε), . . . , Fk(ε)},

where ε is a vector in Nv(K) and Φ := {F−1, F0, . . . , Fk} is a flag of K. Clearly, if r > 1 and Φ,Φ′ are

(r − 1)-adjacent flags of K, then Φ(ε),Φ′(ε) are r-adjacent flags of nK. Similar statements also hold formL.

Now consider the given covering map γ : K → L. For a vertex j of K write j := jγ, so j is a vertex of L.

Since γ is surjective, we may assume that the vertex labeling forK and L is such that the vertices 1, 2, . . . , v(L)
comprise all the vertices of L, and in particular that j = j for each j = 1, . . . , v(L). Now define the mapping

πγ,f : nK → mL

F (ε) → (Fγ)(εf ),
(9)

where as usual F denotes a face of K and ε a vector inNv(K), and

εf := (ε1f, . . . , εv(L)f)

is the vector inMv(L) given by the images under f of the first v(L) components of ε. We claim that π := πγ,f is

a well-defined weak covering.



62 Mathematics of Distances and Applications

First we prove that π is well-defined. For a face F of a complex we let V (F ) denote its vertex set. Now suppose we
have F (ε) = F ′(ε′) in nK, where ε = (ε1, . . . , εv(K)) and ε

′ = (ε′1, . . . , ε
′
v(K)

) belong toNv(K) and F,F ′

are faces ofK. Then necessarily F = F ′, since the vertex sets of F and F ′ must be the same; recall here thatK

is vertex-describable. Thus Fγ = F ′γ. Moreover, εi = ε′i for each i 6∈ V (F ) = V (F ′), so εf and ε
′
f certainly

agree on all components indexed by vertices i with i 6∈ V (F ). All other components of εf and ε
′
f are indexed by

a vertex i of F ; but if i ∈ V (F ) then i = (i)γ ∈ V (Fγ) = V (F ′γ), and hence i indexes a component where
entries are allowed to range freely overM = (N)f . Therefore, (Fγ)(εf ) = (F ′γ)(ε′f ). Thus π is well-defined.

Clearly, π is a homomorphism since this is true for γ. For the same reason, π is rank-preserving and surjective.

It remains to show that π is weakly adjacency preserving. To this end, let

Φ(ε) := {∅, ε, F0(ε), . . . , Fk(ε)}, Φ′(ε′) := {∅, ε′, F ′
0(ε

′), . . . , F ′
k(ε′)}

be flags of nK, where

Φ := {F−1, F0, . . . , Fk}, Φ′ := {F ′
−1, F

′
0, . . . , F

′
k}

are flags of K and ε, ε′ are vectors in Nv(K). Suppose Φ(ε) and Φ′(ε′) are r-adjacent for some r > 0. Then
two possibilities can arise.

If r > 0, then ε = ε′ and Φ,Φ′ must be (r − 1)-adjacent flags of K. It follows that εf = ε′f , and that Φγ,Φ
′γ

are (r− 1)-adjacent flags of L since γ is adjacency preserving. Hence the image flags of Φ(ε) and Φ′(ε′) under
π, which are given by

(Φ(ε))π = {∅, εf , (F0γ)(εf ), . . . , (Fkγ)(εf )}

and

(Φ′(ε′))π = {∅, ε′f , (F
′
0γ)(ε

′
f ), . . . , (F ′

kγ)(ε
′
f )}

respectively, are also r-adjacent. Thus, when r > 0, the map π takes r-adjacent flags of nK to r-adjacent flags of
mL.

Now suppose r = 0. Then Φ = Φ′ (but ε 6= ε′), since the faces Fs and F
′
s of K must have the same vertex

sets for each s > 0; bear in mind that K is vertex-describable. Moreover, since F0 = F ′
0 and r 6= 1, we have

F0(ε) = F ′
0(ε

′) = F0(ε
′), so εi = ε′i for each vertex i ofK distinct from i0 := F0; hence ε and ε

′ differ exactly

in the position indexed by i0. Then we certainly have (Fsγ)(εf ) = (F ′
sγ)(ε

′
f ) for all s > 0. Hence (Φ(ε))π and

(Φ′(ε′))π are either 0-adjacent or identical.

At this point we know that π : nK → mL is weakly adjacency preserving, that is, π is a weak covering. This proves

the first part of the theorem.

Moreover, since the two vectors ε and ε′ differ precisely in the position indexed by i0, the corresponding shortened

vectors (ε1, . . . , εv(L)) and (ε′1, . . . , ε
′
v(L)

) in Nv(L) (underlying the definition of εf and ε
′
f ) also differ only in

the position indexed by i0; note here that i0 = i0, by our labeling of the vertices inK andL. Hence the two vertices

εf = (ε1f, . . . , εv(L)f) and ε′f = (ε′1f, . . . , ε
′
v(L)

f) of mL in (Φ(ε))π and (Φ′(ε′))π, respectively, either

coincide or differ in a single position, indexed by i0; the former occurs precisely when εi0f = ε′i0f . Therefore,

since εi0 and ε
′
i0
can take any value inN , the mapping π is a covering if and only if f is a bijection. This completes

the proof.

Coverings nK → mL with nl
> m.

The previous Theorem 5.3 describes quite general circumstances under which coverings or weak coverings between

power complexes nK andmL are guaranteed to exist. Under the basic condition that n > m this generally leads

to a host of possible weak covering maps. Our next theorem deals with coverings or weak coverings between power

complexes in situations where certain well-behaved (equifibered) coverings between the original complexes K and

L exist. This also permits many examples with n 6 m.

To begin with, letK and L be finite vertex-describable complexes of rank k, and let V (K) := {1, . . . , v(K)} and
V (L) := {1, . . . , v(L)}, respectively, denote their vertex sets. Suppose there is a covering γ : K → L that is
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equifibered (with respect to the vertices), meaning that the fibers γ−1(j) of the vertices j of L under γ all have the
same cardinality, l (say). In other words, the restriction of γ to the vertex sets of K and L is l : 1, so in particular
v(K) = l · v(L).

Important examples of this kind are given by the regular k-polytopesK that are (properly) centrally symmetric, in the

sense that the group Γ(K) contains a central involution that does not fix any of the vertices (see [15, p. 255]); any
such central involution α pairs up the vertices ofK and naturally determines an equifibered coveringK → K/〈α〉,

ofK onto its quotient K/〈α〉, satisfying the desired property with l = 2.

Now returning to the general discussion, let m,n > 2 and l be as above. Define N := {1, . . . , n}, M :=
{1, . . . ,m} and L := {1, . . . , l}. We wish to describe coverings nK → mL that can balance the effect of γ as

an l : 1mapping on the vertex sets, by a controlled change in the base parameters from n tom, providedm 6 nl.

To this end, we may assume that the vertices of K and L are labeled in such a way that

γ−1(j) = Lj := {(j − 1)l + 1, . . . , (j − 1)l + l} (for j ∈ V (L)).

Thus for each j, the map γ takes the vertices ofK inLj to the vertex j of L. By a slight abuse of notation, we then

can write a vector ε = (ε1, . . . , εv(K)) inN
v(K) = (N l)v(L) in the form ε = (ε̂1, . . . , ε̂v(L)), where

ε̂j := (ε(j−1)l+1, . . . , ε(j−1)l+l)

lies inN l for each j = 1, . . . , v(L).

Now suppose that, in addition to γ, we also have a surjective mapping g : N l
→ M (and hencem 6 nl). Then

γ and g determine a mapping
πγ,g : nK → mL

F (ε) → (Fγ)(εg),
(10)

where again F denotes a face of K and ε a vector inNv(K), and

εg := (ε̂1g, . . . , ε̂v(L)g)

is the vector inMv(L) given by the images under g of the components of ε in its representation as (ε̂1, . . . , ε̂v(L)).
We must prove that π := πγ,g is a covering.

First we must show that π is well-defined. Suppose we have F (ε) = F ′(ε′) in nK, where ε = (ε1, . . . , εv(K))

and ε′ = (ε′1, . . . , ε
′
v(K)

) belong to Nv(K) and F,F ′ are faces of K. Then, as in the proof of the previous

theorem, F = F ′, Fγ = F ′γ, and εi = ε′i for i 6∈ V (F ) = V (F ′). Now bear in mind that γ is a covering.
Hence, if i ∈ V (F ) then (i)γ ∈ V (Fγ); or equivalently, if j 6∈ V (Fγ) then V (F ) ∩ Lj = ∅. It follows that, if

j 6∈ V (Fγ), then εi = ε′i for every i in Lj , and therefore ε̂j = ̂ε′j and ε̂jg = ̂ε′jg. Hence εg and ε
′
g agree on

every component represented by vertices of L outside of Fγ = F ′γ. As the remaining components are allowed

to take any value inM , we conclude that (Fγ)(εg) = (F ′γ)(ε′g). Thus π is well-defined.

It is straightforward to verify that π is a rank-preserving surjective homomorphism. To show that π is also weakly

adjacency preserving, let

Φ(ε) := {∅, ε, F0(ε), . . . , Fk(ε)}, Φ′(ε′) := {∅, ε′, F ′
0(ε

′), . . . , F ′
k(ε′)}

be r-adjacent flags of nK, where

Φ := {F−1, F0, . . . , Fk}, Φ′ := {F ′
−1, F

′
0, . . . , F

′
k}

are flags of nK and ε, ε′ lie in Nv(K). Again two possibilities arise. First, if r > 0 then ε = ε′ and Φ,Φ′ are

(r− 1)-adjacent inK. Hence εg = ε′g and Φγ,Φ′γ are (r− 1)-adjacent in L. It follows that the two image flags
under π,

(Φ(ε))π = {∅, εg , (F0γ)(εg), . . . , (Fkγ)(εg)},

(Φ′(ε′))π = {∅, ε′g , (F
′
0γ)(ε

′
g), . . . , (F

′
kγ)(ε

′
g)},



64 Mathematics of Distances and Applications

are also r-adjacent. Now, if r = 0 then Φ = Φ′ (but ε 6= ε′); in fact, V (Fs) = V (F ′
s) and hence Fs = F ′

s for

each s > 0. When s = 0 this gives F0(ε) = F ′
0(ε

′) = F0(ε
′) (since r 6= 1), and therefore εi = ε′i for each

vertex i of K distinct from i0 := F0; hence ε and ε
′ only differ in the position indexed by i0. This already implies

that (Fsγ)(εg) = (F ′
sγ)(ε

′
g) for all s > 0, and hence that (Φ(ε))π and (Φ′(ε′))π are weakly 0-adjacent flags

ofmL. Thus π is a weak covering.

Moreover, since εi = ε′i if and only if i 6= i0, we also know that ε̂j = ̂ε′j if and only if j 6= j0 := (i0)γ. Hence the
two vertices

εg := (ε̂1g, . . . , ε̂v(L)g), ε′g := (̂ε′1g, . . . , ̂ε′v(L)g)

ofmL lying in (Φ(ε))π and (Φ′(ε′))π, respectively, either coincide or differ in a single position, indexed by j0; the
former occurs precisely when ε̂j0g = ̂ε′j0g. Since ε̂j0 can take any value inN

l, the mapping π is a covering if and

only if g is a bijection.

Finally, suppose g is a bijection, so in particular m = nl. Then nK and mL must have the same number of

vertices,

nv(K) = nl·v(L) = mv(L),

and hence π must be a covering that is one-to-one on the vertices.

In summary, we have established the following theorem.

Theorem 5.4. Let K and L be finite vertex-describable incidence complexes of rank k, let γ : K → L be a
covering, and let m,n > 2 and l > 1. Suppose that γ is equifibered with vertex fibers of cardinality l, and that
g : {1, . . . , n}l → {1, . . . ,m} is a surjective mapping (and hence m 6 nl). Then γ and g induce a weak

covering πγ,g : nK → mL between the power complexes nK andmL. Moreover, πγ,g is a covering if and only if

g is a bijection (andm = nl); in this case πγ,g is one-to-one on the vertices.

As an example consider finite regular polygons K = {2p} and L = {p}, with 2p or p vertices, respectively, for
some p > 2. The central symmetry ofK gives an obvious equifibered covering γ : K → L between K and L with
fibers of size l = 2. Now choosem = n2 and pick any bijection g : {1, . . . , n}2 → {1, . . . , n2

}. Then

πγ,g : n{2p}
→ (n2){p}

is a covering. Either complex has n2p vertices, and πγ,g is one-to-one on the vertices. For example, when n = 2
we obtain a covering

πγ,g : 2{2p}
→ 4{p}.

Here 2{2p} is Coxeter’s regular map {4, 2p |4⌊p⌋−1
} described in Section 4.
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