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CLASSIFICATION RESULTS FOR (v, k, 1) CYCLIC DIFFERENCE FAMILIES WITH
SMALL PARAMETERS

Tsonka Baicheva and Svetlana Topalova

Abstract: Classifications of (v, k, 1) cyclic difference families (CDFs) by other authors are known for k = 3 and
v ≤ 57, k = 4 and v ≤ 64, k = 5 and v ≤ 65, k = 6 and v = 91 and k = 7 and v = 91. In this work
we construct all inequivalent (v, k, 1) CDFs (respectively all multiplier inequivalent cyclic 2-(v, k, 1) designs) with
k ≤ 11 and some small v by a computer search and an algorithm similar to the one applied for the classification
of optimal orthogonal codes in our previous works. We obtain the same number of inequivalent CDFs for all the

parameters, for which previous classification results are known. The new parameters covered by our software for

k ≤ 7 are (61, 3, 1), (73, 4, 1), (76, 4, 1), (81, 5, 1), and (85, 5, 1) CDFs.
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Introduction

Definition 1. Let B be a subset of an additive group G. We denote by ∆B the list of all possible differences

b − b′ with (b, b′) an ordered pair of distinct elements of B. More generally, if F = {B1, B2, . . . , Bn} is a

collection of subsets of G, then the list of differences from F, denoted by ∆F, is the multiset obtained by joining

∆B1, . . . ,∆Bn. F is said to be a (v,k,1) difference family (DF) ifG has order v, every Bi is of size k ≥ 3,
and∆F covers every non-zero element ofG exactly once. If further,G = Zv , then this difference family is said to

be cyclic (CDF).

For general background on difference families we refer to [Abel, 1996] and [Beth, Jungnickel, Lenz, 1999]. Complete

sets of CDFs are of interest in their own right, as well as for applications in the construction of other types of

combinatorial structures. There are known applications to one-factorizations of complete graphs and to cyclically

resolvable cyclic Steiner triple systems [Fuji-Hara, Miao, Shinohara, 2002], as well as to constructions of regular

LDPC codes [Fujisawa, Sakata, 2005]. Very efficient constructions of new optimal perfect secrecy systems that are

onefold secure against spoofing are obtained via CDF [Huber, 2012]. Optimal frequency-hopping sequences can

also be constructed from (v, k, 1) CDFs.

01 Related combinatorial structures

Differences can be considered as a measure of distance. That is why CDF s correspond to several different

combinatorial structures, for which a distance condition is defined by means of scalar product, or Hamming distance.

A very suitable example are the two different definitions that authors very often give for (v, k, λ) optical orthogonal
codes (OOCs).
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Definition 2. A (v, k, λ) optical orthogonal code C is a collection of {0, 1} sequences of length v and Hamming

weight k such that:

v−1
∑

i=0

x(i)x(i + j) ≤ λ, 1 ≤ j ≤ v − 1 (1)

v−1
∑

i=0

x(i)y(i + j) ≤ λ, 0 ≤ j ≤ v − 1 (2)

for all pairs of distinct sequences x, y ∈ C. The same definition holds for a (v, k, λ) binary cyclically permutable
constant weight (CPCW) code.

Definition 3. A (v, k, λ) optical orthogonal code (OOC) can be defined as a collection C = {C1, . . . , Cs} of

k-subsets (codeword-sets) of Zv such that any two distinct translates of a codeword-set and any two translates of

two distinct codeword-sets share at most λ elements:

|Ci ∩ (Ci + t)| ≤ λ, 1 ≤ i ≤ s, 1 ≤ t ≤ v − 1 (3)

|Ci ∩ (Cj + t)| ≤ λ, 1 ≤ i < j ≤ s, 0 ≤ t ≤ v − 1. (4)

And if (v, k, 1) OOCs are considered, the latter definition is usually replaced by the following one.

Definition 4. A (v, k, 1) optical orthogonal code (OOC) may be viewed as a set of k-subsets of Zv whose list of

differences has no repeated elements.

A (v, k, 1) OOC is optimal when its size reaches the upper bound

⌊

(v − 1)

k(k − 1)

⌋

. If its size is exactly equal to

(v − 1)

k(k − 1)
, the code is perfect because its list of differences covers all nonzero elements of Zv. A perfect (v, k, 1)

OOC forms a (v, k, 1) CDF.

Next we supply definitions of other combinatorial structures related to difference families.

Definition 5. Let V = {Pi}
v
i=1
be a finite set of points, andB = {Bj}

b
j=1
a finite collection of k-element subsets

of V , called blocks. D = (V,B) is a design with parameters t-(v,k,λ) if any t-subset of V is contained in exactly

λ blocks of B.

A t-(v,k,λ) design is cyclic if it has an automorphism permuting its points in one cycle.

Definition 6. An (n,w, d) binary constant weight code (CWC) of length n, weight w and minimal distance d is

a collection of binary vectors of length n (codewords), which have exactly w nonzero positions and the Hamming

distance between any two codewords is at least d. A CWC is cyclic if the cyclic shift of each codeword is a codeword

too. A cyclic CWC corresponds to an (n,w,w − d/2) CPCW code.

A (v, k, 1) CDF can be obtained from any optimal perfect (v, k, 1) CPCW code (optimal perfect (v, k, 1) OOC),
and from any optimal cyclic binary CWCwith weight k and minimal distance 2(k−1). CDFs with v ≡ k (mod k(k−
1)) do not correspond to CPCW codes (OOCs) and cyclic binary CWCs.

There is a one-to-one correspondence between (v, k, 1) CDFs and cyclic 2-(v, k, 1) designs. An example illustrating
the relations between difference families and other combinatorial structures is presented in Figure 1.

02 Equivalence

The aim of our work is classification of CDFs. That is why we have to know when two CDFs are equivalent.
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Figure 1: Relations of cyclic difference families

a) - Perfect (13, 3, 1) OOC and (13, 3, 1) CDF
codeword-sets(sets) differences

{0,1,4} 1 3 4 9 10 12

{0,2,8} 2 5 6 7 8 11

b) - Related cyclic 2-(13,3,1) design and cyclic (13,3,4) CWC
0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1

2 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0

3 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0

4 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0

5 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0

6 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0

7 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1

8 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0

9 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0

10 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0

11 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0

12 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1

Definition 7. Two difference families F = {B1, B2, . . . , Bn} and F
′ = {B′

1, B
′
2, . . . , B′

n} over a group G

are equivalent if there is an automorphism α of G such that for each i = 1, 2, . . . , n there exists B′
j which is a

translate of α(Bi).

We are also interested in the equivalence definitions for the related to the CDFs combinatorial objects, because

classifying CDFs we classify them too.

Definition 8. Two 2-(v, k, λ) designs D and D′ are isomorphic if there exists a permutation of the points which

maps each block ofD to a block ofD′.

Definition 9. Two (v, k, λ) CPCW codes C andC ′ are isomorphic if there exists a permutation of Zv , which maps

the collection of translates of each block of C to the collection of translates of a block of C ′.

Multiplier equivalence is defined for cyclic combinatorial objects.

Definition 10. Two (v, k, λ) CPCW codes (OOCs) are multiplier equivalent if they can be obtained from one
another by an automorphism of Zv and replacement of blocks by some of their translates.

Definition 11. Two cyclic 2-(v, k, λ) designs D and D′ are multiplier equivalent if there exists an automorphism

of Zv which maps each block ofD to a block ofD
′.

Two cyclic designs can be isomorphic, but multiplier inequivalent. The same holds for two CPCW codes.

The number of multiplier inequivalent perfect optimal 2-(v, k, 1) CPCW codes (OOCs) is the same as the number
of the inequivalent 2-(v, k, 1) CDFs.

The number of inequivalent (v, k, 1) CDFs is the same as the number of multiplier inequivalent cyclic 2-(v, k, 1)
designs, and vice versa.

03 Existence Results

The known existence results for CDFs with k = 3, 4, 5, 6, 7 can be summarized as follows:



Mathematics of Distances and Applications 27

Theorem 1. A (v, k, 1) CDF can exist for v ≡ 1, k (mod k(k − 1)).

Theorem 2. [Dinitz, Shalaby, 2002] There exists a (v, 3, 1) difference family for every v ≡ 1, 3 (mod 6) except
v = 9.

Theorem 3. ([Bose 1939],[Buratti, 1995],[Buratti, 1997],[Colbourn, Dinitz (eds.), 1996],[Lidl, Niederreiter, 1983])

1. For any prime power q ≡ 1 (mod 12) there exists a (q, 4, 1) difference family in GF(q).

2. For any prime power q ≡ 1 (mod 20) there exists a (q, 5, 1) difference family in GF(q).

Theorem 4. ([Abel, Burati, 2004],[Abel, Costa, Finizio, 2004])

1. A (12t + 1, 4, 1) differnce family exists for 1 ≤ t ≤ 50 except for t = 2.

2. A (20t + 1, 5, 1) differnce family exists for 1 ≤ t ≤ 50 except possibly for t = 16, 25, 31, 34, 40, 45.

Theorem 5. ([Chen, Zhu, 1998]) There exists a (q, 6, 1) DF for any prime power q ≡ 1 (mod 30) with one
exception of q = 61.

Theorem 6. ([Chen, Wei, Zhu, 2002]) There exists a (q, 7, 1) DF for any prime power q ≡ 1 (mod 42) except for

q = 43, posibly for q = 127, 211, 316 , and primes q ∈ [261239791, 1.236597.1013 ] such that (−3)
(q−1)

14 = 1
in GF(q).

04 On the classification problem

The classification and the public accessibility of the classified CDFs with small parameters is of particular interest,

because it can help to choose, among CDFs with the same parameters, the one which is most suitable for some

application (for optical code-division multiple-access channels for instance), or the one which is most suitable to

serve as ingredient in some recursive construction of CDFs with higher parameters.

Classifications of cyclic difference families by other authors are known for k = 3 and v ≤ 57 [Colbourn, Rosa, 1999],
k = 4 and v ≤ 64 [Colbourn, Mathon, 1980], k = 5 and v ≤ 65 [Colbourn, Mathon, 1980], k = 6 and v = 91
[Colbourn, 1981], [Janko, Tonchev, 1991] and k = 7 and v = 91 [Bhat-Nayak, Kane, Kocay, Stanton, 1983]. In
this work we construct all inequivalent cyclic difference families with k ≤ 11 and some small v.

Construction method

We use a modification of our algorithm for classification of optimal (v, k, 1) OOCs [Baicheva, Topalova, 2011].

We classify the (v, k, 1) CDFs up to equivalence by back-track search with minimality test on the partial solutions
[Kaski, Östergård, 2006, section 7.1.2]. Without loss of generality we can assume that b1 < b2 < · · · < bs for

each set B = {b1, b2, . . . , bs}. We first arrange all possibilities for the sets Bi with respect to a lexicographic

order defined on them. If a set Bi ∈ F is replaced by one of its translates, we obtain an equivalent CDF. That is

why we can assume that each set of F is lexicographically smaller than its translates. This means that b1 = 0 and
when we say that B1 is mapped toB2 by the permutation ϕ, we mean that B2 is the smallest translate of ϕ(B1).

Let ϕ0, ϕ1, . . . , ϕm−1 be the automorphisms of Zv , where ϕ0 is the identity. We construct an array of all sets

B of k elements of Zv which might become sets of F, i.e. they are smaller than all their translates and ∆B

does not contain repeated differences. We find them in lexicographic order. To each constructed set we apply the

permutations ϕi, i = 1, 2, . . . ,m − 1. If some of them maps it to a smaller set, we do not add the current set
since it is already somewhere in the array. If we add the current set to the array, we also add after it them− 1 sets
to which it is mapped by ϕ1, ϕ2, . . . , ϕm−1.

Most of the sets of a CDF have v− 1 translates. If v ≡ k (mod k(k− 1)) one of the sets has v/k translates and

is equal to {0, v/k, 2v/k, . . . , (k − 1)v/k}, so we first add this set to the CDF. We then apply back-track search

to choose the sets with v−1 translates from the upper list of all possibilities for them. The above described ordering
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of all the possible sets allows repeated sets in the array, but makes the minimality test of the partial solutions very

fast. By the minimality test we check if the current solution can be mapped to a lexicographically smaller one by the

automorphisms of Zv and reject it if so.

In this way we classify the CDFs up to multiplier equivalence. We use our own software written in C++.

Classification results

CDFs correspond to the perfect optimal OOCs which we have classified in our papers on optimal OOCs with

parameters (v, 4, 1) [Baicheva, Topalova, 2011], (v, 5, 1) [Baicheva, Topalova, 2012a] and (v, 3, 1)
[Baicheva, Topalova, 2012b]. Therefore, in these papers new results about CDFs are obtained too. In the present

paper we repeat all previous results on CDFs (ours and of other authors) and add some new ones, which we obtain

by the above described construction method. We find the same number of inequivalent CDFs for all the parameters,

for which previous classification results are known. To the results of other authors for k ≤ 7 we add classifications
of (61, 3, 1), (73, 4, 1), (76, 4, 1), (81, 5, 1) and (85, 5, 1) CDFs. A summary is presented in Table 1.

Since previous classification results have been obtained by different authors for the different parameters, we think

that collecting them together is of particular interest. We believe that both Table 1 and the files with all the

inequivalent difference sets (available from the authors) will be very useful for applications and to people who will go

on with research in this field.

Table 1: Inequivalent cyclic (v,k,1) difference families (Multiplier inequivalent cyclic 2-(v,k,1) designs)

v k CDFs

7 3 1

9 3 0

13 3 1

15 3 2

19 3 4

21 3 7

25 3 12

27 3 8

31 3 80

33 3 84

37 3 820

39 3 798

43 3 9508

45 3 11616

49 3 157340

51 3 139828

55 3 3027456

57 3 2353310

61 3 42373196

v k CDFs

13 4 1

16 4 0

25 4 0

28 4 0

37 4 2

40 4 10

49 4 224

52 4 206

61 4 18132

64 4 12048

73 4 1426986

76 4 1113024

21 5 1

25 5 0

41 5 1

45 5 0

61 5 10

65 5 2

81 5 528

v k CDFs

85 5 170

31 6 1

36 6 0

61 6 0

66 6 0

91 6 4

96 6 0

43 7 0

49 7 0

85 7 0

91 7 2

57 8 1

64 8 0

73 9 1

81 9 0

91 10 1

100 10 0

111 11 0

121 11 0
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