Krassimir Markov, Vitalii Velychko, Lius Fernando de Mingo Lopez, Juan Casellanos (editors)

New Trends in Information Technologies

I T H E A SOFIA 2010

Krassimir Markov, Vitalii Velychko, Lius Fernando de Mingo Lopez, Juan Casellanos (ed.) New Trends in Information Technologies

ITHEA®

Sofia, Bulgaria, 2010

ISBN 978-954-16-0044-9

First edition

Recommended for publication by The Scientific Concil of the Institute of Information Theories and Applications FOI ITHEA

This book maintains articles on actual problems of research and application of information technologies, especially the new approaches, models, algorithms and methods of membrane computing and transition P systems; decision support systems; discrete mathematics; problems of the interdisciplinary knowledge domain including informatics, computer science, control theory, and IT applications; information security; disaster risk assessment, based on heterogeneous information (from satellites and in-situ data, and modelling data); timely and reliable detection, estimation, and forecast of risk factors and, on this basis, on timely elimination of the causes of abnormal situations before failures and other undesirable consequences occur; models of mind, cognizers; computer virtual reality; virtual laboratories for computer-aided design; open social info-educational platforms; multimedia digital libraries and digital collections representing the European cultural and historical heritage; recognition of the similarities in architectures and power profiles of different types of arrays, adaptation of methods developed for one on others and component sharing when several arrays are embedded in the same system and mutually operated.

It is represented that book articles will be interesting for experts in the field of information technologies as well as for practical users.

General Sponsor: Consortium FOI Bulgaria (www.foibg.com).

Printed in Bulgaria

Copyright © 2010 All rights reserved

© 2010 ITHEA® - Publisher; Sofia, 1000, P.O.B. 775, Bulgaria. www.ithea.org; e-mail: info@foibg.com

© 2010 Krassimir Markov, Vitalii Velychko, Lius Fernando de Mingo Lopez, Juan Casellanos – Editors

© 2010 Ina Markova – Technical editor

© 2010 For all authors in the book.

® ITHEA is a registered trade mark of FOI-COMMERCE Co.

ISBN 978-954-16-0044-9

C\o Jusautor, Sofia, 2010

BENCHMARK OF PSO-DE USING BBOB 2010

Nuria Gómez Blas, Luis F. de Mingo

Abstract: As an example, we benchmark the Particle Swarm Optimization algorithm with a Differential Evolution on the noisefree Black Box Optimization Benchmark 2010 testbed. Each candidate solution is sampled uniformly in [-5, 5] ^D, where D denotes the search space dimension, and the evolution is performed with a classical PSO algorithm and a classical DE/x/1 algorithm according to a random threshold. The maximum number of function evaluations is chosen as 10⁵ times the search space dimension. This paper shows how to evaluate the performance of a given optimization algorithm a using the BBOB 2010.

Keywords: Benchmarking, Black-box optimization, Direct search, Evolutionary computation, Particle Swarm Optimizacin, Differential Evolution

Categories: G.1.6 [Numerical Analysis]: Optimization-global optimization, unconstrained optimization ; F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical Algorithms and Problems.

Introduction

Particle swarm optimization (PSO) is a global optimization algorithm for dealing with problems in which a best solution can be represented as a point or surface in an n-dimensional space. Hypotheses are plotted in this space and seeded with an initial velocity, as well as a communication channel between the particles. Particles then move through the solution space, and are evaluated according to some fitness criterion after each timestep. Over time, particles are accelerated towards those particles within their communication grouping which have better fitness values. The main advantage of such an approach over other global minimization strategies such as simulated annealing is that the large number of members that make up the particle swarm make the technique impressively resilient to the problem of local minima [7, 8, 9].

Equations used in the particle swarm optimization training process are the following ones, where c1 and c2 are two positive constants, R1 and R2 are two random numbers belonging to [0, 1] and w is the inertia weight. This equations define how the genotype values are changing along iterations.

$$egin{aligned} &v_{in}(t+1) = wv_{in}(t) + \ &c_1 R_1(p_{in} - x_{in}(t)) + \ &c_2 R_2(p_{gn} - x_{in}(t)) \end{aligned}$$

$$x_{in}(t+1) = x_{in}(t) + v_{in}(t+1)$$

Previous equations will modified the network weights till a stop conditions is achieved, that is, a lower mean squared error or a maximum number of iterations is reached.

Differential Evolution (DE) is an evolutionary algorithm [10, 11, 12] that uses a differential mutation procedure that consists in the addition of the weighted difference of two population vectors to a third vector. Many variants of the differential mutation procedure exists. Choosing between these variants and setting parameters requires preliminary testing as [11] admits that the results of the algorithm are dependent on the chosen strategy and the choice of parameter. DE/local-to-best/1 is a variant where instead of the base vector x_{i1} being chosen in the

population vector, it is chosen to lie between the vector considered and the best vector so far, thus the update of the velocity is written as follows, where F is a constant in the range [0, 2]:

Figure 1: Expected Ronning Time (ERT, \bullet) to reach $f_{opt} + \Delta f$ and median number of *f*-evaluations from successful trials (+), for $\Delta f = 10^{[+1,0,-1,-2,-3,-5,-8]}$ (the exponent is given in the legend of f_1 and f_{34}) versus dimension in log-log presentation. For each function and dimension, $\text{ERT}(\Delta f)$ equals to $\#\text{FEs}(\Delta f)$ divided by the number of successful trials, where a trial is successful if $f_{opt} + \Delta f$ was surpassed. The $\#\text{FEs}(\Delta f)$ are the total number (sum) of *f*-evaluations while $f_{opt} + \Delta f$ was not surpassed in the trial, from all (successful and unsuccessful) trials, and f_{opt} is the optimal function values. Crosses (×) indicate the total number of *f*-evaluations, $\#\text{FEs}(-\infty)$, divided by the number of trials. Numbers above ERT-symbols indicate the number of successful trials. Y-axis annotations are decimal logarithms. The thick light line with diamonds shows the single best results from BBOB-2009 for $\Delta f = 10^{-8}$. Additional grid lines show linear and quadratic scaling.

Method

We have used a uniform sampling in $[-5, 5]^{D}$, where D denotes the dimension of the search space. The experiments according to [3] on the benchmark functions given in [2, 4] have been conducted using a C-code. A maximum of $10^5 \times D$ function evaluations has been used.

/1 in 8-D, N=18, mPE=6082	11 Son 285-D, Nucl.5, onFEma10078	12 ha 8-D, N=15, mFH=51367	2 in 20-D, N=15, orFE=115545
10 15 4.3c1 1.1c1 5.5c1 4.3c1	51 Sen 288-D, NullA, mFHan35078 5 HRT 10% 26% BT _{FRCC} 13 2.4u3 1.1u3 3.2u3 2.6u3	j2 in δ-D, N=15, mFH=S1347 j Δj # ERT 10% 20% BT maxe 4 10 15 2.1c3 1.2c4 3.5c4 2.1c3 1	E BAT 107 209 BINDER
1 15 2.0 c2 9.0 c1 2.9 c2 2.0 c2 1c-1 15 3.5 c2 2.5 c2 3.2 c2 3.5 c2	13 9.0c3 7.0c3 1.1c4 9.9c8	1 15 2.6e3 1.5e3 3.9e3 2.5e3 1 ie-1 15 3.1e3 2.2e3 4.2e3 3.1s3 1	5 4.1ef 3.3ef 3.5ef 4.1e4
in-2 15 7.042 6.842 9.142 7.042 in-5 15 1.743 1.143 1.543 1.343	15 1.2e4 9.5c2 1.6e4 1.2e4	le-S 15 4.0e3 5.1e3 5.5e3 4.0e3 1	5 4.984 4.884 6.684 4.884 5 5.844 4.884 7.884 3.884
la-5 15 2.7c8 2.8c2 2.5c2 2.7c3	15 2.3n4 3.1n4 2.6n4 2.8m4	3u-8 15 8.1c8 8.1c5 8.2c5 8.1s8 1	5 7.8e6 8.5e6 1.1e5 7.8e4
52 2m S-D, N=15, mFid=30730 Af # ERT 10% 80% ET	/3 in 29-D , N=15, mFH=123040 # EET 10% 97% BT _{SWEE}	f4 in 6-D, N=15, mFG=30700 Δj # EET 10% 90% BTgggr 10 11 1.9ed 1.5e3 3.4e4 7.4e3	f4 he 29-D, N=13, esFE=12304D * ERT 16% 90% RTener
10 13 1.1 ml 3.3 ml 3.2 ml 0.9 ml	0 13a+1 28c+0 28a+1 5.9e4		both 1+aft t+st t+aft 0
1 7 4.9e4 S.Lu3 1.1e5 1.Se4 http://dx.ac.ac.ac.ac.ac.ac.ac.ac.ac.ac.ac.ac.ac.	: : : : :	1 4 1.De8 1.Me3 3.De8 1.6e4 h-1 2 3.3e5 3.De8 5.Se5 2.7e4	
in-5 5 8.005 1.105 2.205 1.804 in-5 5 8.205 1.005 1.705 2.004	: : : : :	k-5 2 2.3ed 3.0ed 4.4eb 2.7e4 k-3 2 2.3ed 3.0ed 5.2e5 2.8e4	: : : : :
le-8 4 1.005 1.806 2.605 2.004		la—8 0 59e i 6≴e 7 25e∔0 2.8e4	
/g in 5-D, N=13, mFE=2413 Δ/ # EET 10% 02% ETmore 16 15 1.5 cf 3.6 cl 2.1 c2 1.5 c2	#g in 220-D, N=15, mFE=33803 # BRT 10% 80% ET _{mac}	jg in 3-D, R=15, m/E=21270 j Δj # ERT 10% 80% BT_maxr 10 15 3.6e2 2.5e2 4.6e2 1	(g m. 20-D, N=15, mFE=121000 ⊨ ERT 10% 80% ET_marr
10 15 1.5e2 3.0e1 2.1e2 1.5e2 1 15 3.6e2 1.7e2 7.8e2 3.9e2	13 13nd 3.6n3 2.1nt 1.3nt 13 1.5n4 1.2nd 3.0nd 1.9nt	10 15 4.8e2 1.0e2 8.8e2 4.0e2 1 1 15 1.0e3 4.7e2 2.0e3 1.0e3 1	5 3.3cf 9.6cf 4.5cf 3.9c4 5 4.7cf 3.7cf 3.9cf 4.7cf
la-1 15 3.9e2 2.1e2 7.8e2 3.9e3	15 2.0c8 1.3c8 2.7c4 2.0c4	h-1 15 3.8c5 7.1c2 5.5c5 1.5c3 1	5 5.3of 5.3of 7.4of 6.3s4
in-3 15 3.942 2.142 6.242 3.942 in-5 15 1.942 2.142 5.742 3.942	15 2.044 1.044 2.744 2.044 13 2.044 1.444 2.744 2.044	lc-5 IS 6.6c3 5.1c5 9.6c5 4.6c5 1	4 1.9a5 7.2a4 1.2a5 9.5a4 5 8.9a5 1.1a5 1.8a5 1.1a5
ia-6 15 3.9e2 2.1e2 7.5e2 3.9e2 j7 in 5-D, K=15, mFE=30780		ie-9 15 1.3e4 1.1e4 1.8e4 1.3e4 (fs in 5-D, N=15, mPE=30780) 34e 6 55e 7 50e 6 1.2e5 fe la 356.12 N=15, mEE=120140
△/ # HET 10% 20% BTends	# EEET 10% DO% ETanger	Δ / # BET 105 90% BTgende	# 1219T 10% 10% HT.
10 18 2.6e2 6.2e1 7.2e2 2.6e2 1 7 3.6e6 4.2e2 9.3e6 1.1e3	0 89e+# 4#e+0 Lik+2 4.2e4	1 12 1.166 0.863 3.564 3.463	6 1.7e8 2.8e4 1.5e8 6.1e4 2 5.7e5 7.3e4 1.5e6 6.1e4
ie-1 0 16c 1 1/c 2 25c 1 2.6c5		in-1 12 1.3ed 6.7e2 3.6e4 5.4e3 in-3 12 1.5ed 3.8e3 4.0e4 7.3e4	1 1.6u6 3.6u5 4.6u5 1.1u5 0 86s f 33s 2 fin+9 1.2u5
14-8		le-1 12 1.8ed 3.0e3 3.8e4 5.4e3	
ia−ā . fg in 5-13, N=15, mPE=305790	fg in 22-D, K=15, mFE=123040	f10 to 9-D, N=13, orFE=80790	f10 in 20-D, N=15, mFE=123040
Δf 4 BHT 10% 90% BT _{mare} 10 15 3.9e2 1.8e2 5.8e2 3.9e2	fs 20 220 D, N=15, mFH=123060 4 ERT 10% 20% RTmar 3 5.8c3 5.4c4 1.2c5 5.6c5	$\Delta f \neq EBT$ 10% 90% RT_{store}	f10 in 20-D, N=D, mFE=125040 # EBT 10% 00% BT _{max} 0 55e+2 68e+0 55e+1 1.2e3
1 12 1.0c4 5.0c2 8.4c4 2.5c5	1 1.8c5 1.8c6 2.8c6 5.8c6	1 11 2.764 3.965 5.664 1.664	u mett estto suett raes
ie-1 12 1.2e8 1.0e8 3.6e8 4.7e5 In-3 12 1.3e8 4.4e2 3.8e6 7.0e3	1 1.8e6 1.9e6 3.7e8 9.2e4 0 #2x+0 63r 1 23x+9 1.2e8	le-1 7 5.3e5 4.4e5 1.2e5 1.8e4 le-3 0 Me 3 Me 4 Me 7 3.1e4	
io-5 12 1.6e4 5.5e9 4.8e4 7.9e5 io-8 12 1.8e4 8.5e9 4.1e6 1.0e5		14-5 · · · · · · ·	
for an 5-D, N=15, mFE=30390	\$11 m 20-D, N=15, mFE=123045	/12 in 8-D, X=18, mFB=30700	\$12 in 26-D, X=15, mFE=123040
Δf ≠ ENT 10% 90% BT _{super} 10 13 6.4a3 1.2a3 1.5a4 6.4a3	# ERT 10% 98% NT _{start} 12 1.1a5 5.1a5 2.0a5 8.0a5	β1g in 8-D, X=13, mFE=30700 Δj Ξ EET 10% 90% RT_spc 10 13 4.8n3 1.9n3 1.0n4 4.8n3	# KHT 10% 90% HT_mar
1 11 2464 3.743 7.854 1.844 20-1 3 3.544 2.044 1.945 2.444	1 1.8e6 2.2e5 4.0e5 8.2e4 0 32e 2 No. 1 20e49 1.2e6	1 13 1.4ed 1.2e3 3.2e4 8.3e3 in-1 11 2.8e4 9.8e3 4.7e4 1.8e4	4 3.6c3 1.7c4 7.6c3 1.6c4 1 1.7c8 5.4c4 5.4c5 2.2c4
ht-S O Gin G 25a 3 22a 2 3.1a4	0 326 7 396 7 396.7-V 1.286	le-3 7 3.3ed 1.3ed 1.1e5 1.8et	D 29n f 35e f 48n+# 1.2ek
1e-d 1e-8	: : : : :	1a-3 5 7.865 1.454 1.765 1.865 1a-8 3 1.565 2.854 3.465 2.464	::::::
fig in 5-D, N=15, mPE=50990 Af # ERT 105 90% RTuna	fia in 28-D, N=16, mFB=125040	f14 in 8-D, X=18, mFE=30790 Af 15 EET 105 905 FT and	114 in 26-D, N=18, mFB=122640
10 12 8.643 4.842 3.245 L243	# ERT 16% 98% NT _{suce}	10 13 1.3e1 3.0e0 6.0el 2.3el	# ERT 10% 60% RTmmer 15 1.1e3 1.7e3 4.1e3 1.1e3
1 7 3.8n4 1.0n8 5.7n5 1.8e8 In-1 3 1.5n8 3.3n8 3.2n8 4.9e3	8 2.7mi 2.3mi 7.7mi 2.8mi 1 1.8mi 1.3mi 3.4mi 2.9mi	1 18 1.1c2 1.1c3 2.5c7 2.1c2 1c-1 18 4.0c2 2.5c2 4.5c7 4.0c2	15 T.Pe2 B.Ord 1.1e4 T.Be5 15 1.1e4 D.1e5 1.4e4 1.1e4
In-3 0 sie 2 rie 5 die+6 2.9e4	0 34s 2 30s 2 2ffs.+0 1.2u8	in-5 15 1.705 1.208 3.208 1.705 in-5 14 1.805 4.809 1.505 1.905	15 3.304 3.104 4.104 3.304 0 55 6 31c 5 55 4 1.2e5
1m-6		la-8 1 4.8e5 6.1e4 1.1e6 3.1e4	
f 16 in 5-D, N=15, mFE=30040 Δf 4 ERT 10% 90% BTunge	fig in 220-D, N=15, mFE=123040 4 ERT 10% 98% RT _{FUEC}	f 15 hz 5-D , X=14, mFE=36790 Δ j # EET 10% 90% RT ₂₀₀₇	fig in 36-D, X=15, mFE=123945 # ERT 10% 90% RT _{surg}
Δf 4 ERT 10% 90% BT _{ener} 10 10 1.6s4 6.1s2 6.3sd 7.7c3 1 1 4.3s5 3.3s4 5.6sd 2.9s3	4 ERT 18% 98% WT_max 9 20++1 22++1 20++1 2.0+4	Δj 4 EBT 10% 90% RT _{SHEX} 16 13 1.3e2 1.2e1 2.Te2 1.3e2 1 9 3.2e6 7.1e2 6.3e4 1.3e3	
In−1 0 28e 2 09e 2 09e 4 09e+8 7.9e3		h-1 1 4.3e5 3.2e4 1.3e6 2.0e5	D 290.00 SEE 1 100.00 L.205
1a - 3		1a-1 0 76s 2 /2s 2 24s 1 3.0st 1a-1s	
le-2 /37 in 5-D, N=15, mFE=20010	fay in 20-D, N=15, mFE=123040	iz-5	/15 in 20-D, N=15, mFE=123040
Δ/ # ERT 10% 90% BT _{Studie}	# ERT 16% SO% ETenne	Af 3 BET 10% 90% RTanes	# ERT 10% 90% ETman
10 14 2.7el 8.0e0 6.5el 2.7el 1 14 2.7e3 1.2e2 9.8e2 4.9e3	13 4 5a5 1.0a2 6.5a2 4.5a2 0 55a 1 35a / 25a / 1.2a5	10 13 3.8e2 9.8e1 2.9e2 8.8e2 1 10 1.8e4 4.3e3 3.2e4 8.0e2	1 1.7ef 1.5ef 5.5ef 5.4e5 0 15e+9 1ie+0 15e+0 1.2e5
le-1 7 d.0e4 8.1e2 9.3e4 3.1e3 le-3 1 4.4e5 7.3e4 1.0e5 1.2e4		in-1 1 4.803 8.804 1.108 2.404 in-5 0 326 2 176 2 586 1 2.964	
la-d 0 96a 9 46a 4 23a 9 2.9a4		la-#	
1=-6 /13 in 5-D, N-15, mPE-50340	F19 in 28-D, N-15, mFE-123048	20 in 8-D, N=18, mFE=30790	/20 in 28-D, N-15, mPE-122040 & EET 10% SOX RTance
Af # ERT 10% 90% BT # 200	4 ERT 16% SD% RT _{ext}	Δ/ # HET 10% 90% RT _{SHOW} 10 13 6.8e1 4.8e1 1.7e2 8.8e1	* EET 10% SUM RTatled 15 0.7c3 3.7c7 1.3c3 0.7c2
1 13 2.7e3 3.9e2 6.3e3 2.7e3	4 4.De5 6.3e4 9.7c5 5.7e4	1 B 6.6ef 6.2e2 1.3e5 6.6e5	D 16c f 37c f Alle J Llob
le-1 2 2.1n5 1.6n4 4.5n5 1.0n4 le-3 0 26n 3 37n 3 85n 3 3.1n4	0 14a 1 77a 2 24a 2 1.2ab	la-1 D file 1 43e 3 48e 1 1.0e4	
		1a-8	
fur so 5-11 N=15, mFE=20290	ful he 28-D, N=15, mFE=121040	Pps In 5-13, N=18, mF2=30700	/22 in 36-D, X=15, mFE=122945
Af # ERT 10% 90% BT state	# ERT 10% 90% ET_markt 12 3.8e4 9.3e2 1.3e5 5.1e3	<u>∆/ # HET 10% 80% HTentr</u> 10 11 4.9e3 7.7e1 3.1e4 2.0e3	# ERT 10% B0% RIstor 8 1.9-5 4.0-2 5.8-5 5.8-3
1 4 8.844 1.243 3.248 2.143 h-1 4 6.844 4.843 1.645 4.443	2 5.100 7.903 1.7e6 6.3e3 1 1.7e6 1.3e5 3.8e5 5.4e5	1 1 4.3e8 3.1e4 9.4e8 4.5e2 le=1 0 Ste 1 Ste 1 Me+6 4.0e3	2 8.1e5 1.3e8 1.7e8 7.8e3 0 /3e+0 89c 2 29c+0 4.0e4
le-3 4 5.4a4 6.3a2 2.5a5 7.5a2	1 1.7ef 1.4e5 6.9cf 1.3e4	1a-3	· · · · · · ·
le-3 d 8.6u4 1.5u3 1.9u5 1.5u3 le-3 d 8.6u4 1.7u3 2.5u5 1.6u4	1 1.7e8 1.4e5 5.8c8 1.8e4 1 1.8e8 1.8e5 4.5c8 2.8e4	1a-5	
/22 in 5-D. N=15, mPE=30940	522 in 28-D, N=15, mFE=123040	f24 in 5-D, N=15, mFE=30790 Δj φ BBT 10% 90% RT ₂₀₀₀	\$24 in 26-D, N=15, mFE=122640
10 13 3.9c0 1.0c0 3.0s1 3.9c9	15 5.1el 4.0el 2.0el 9.1e0	18 7 3.3e4 1.4e3 9.5e4 2.5e3	# ERT 10% 90% BT _{IMPL} 0 Ib.+I Th.+0 Ib.+1 1.TeB
1 15 2.403 1.803 3.503 2.405 10-1 3 1.405 0.803 3.105 1.804	3 8.005 1.505 1.505 1.204 O 150 2 700 3 100 1 1.305	1 0 its+8 75s i t5s+8 2.2si ls=1	
le-3 () 23k 2 3k 3 5k 2 3.0c4		1a-5	
1a-6		14-4	

Table 1: Shown are, for a given target difference to the optimal function value Δf : the number of successful trials (#); the expected running time to surpass $f_{opt} + \Delta f$ (ERT, see Figure 1); the 10%-tile and 90%-tile of the bootstrap distribution of ERT; the average number of function evaluations in successful trials or, if none was successful, as last entry the median number of function evaluations to reach the best function value (RT_{succ}). If $f_{opt} + \Delta f$ was never reached, figures in *italics* denote the best achieved Δf -value of the median trial and the 10% and 90%-tile trial. Furthermore, N denotes the number of trials, and mFE denotes the maximum of number of function evaluations executed in one trial. See Figure 1 for the names of functions.

The simulations for 2; 5; 10; 20 and 40 D were done with the C-code and took 2 hours and a half. No parameter tuning was done and the crafting effort CrE [3] is computed to zero.

Figure 2: Empirical cumulative distribution functions (ECDFs), plotting the fraction of trials versus running time (left subplots) or versus Δf (right subplots). The thick red line represents the best achieved results. Left subplots: ECDF of the running time (number of function evaluations), divided by search space dimension D_s to fall below $f_{opt} + \Delta f$ with $\Delta f = 10^k$, where k is the first value in the legend. Right subplots: ECDF of the best achieved Δf divided by 10^k (upper left lines in continuation of the left subplot), and best achieved Δf divided by 10^{-8} for running times of D, 10D, 100D... function evaluations (from right to left cycling blackcyan-magenta). The legends indicate the number of functions that were solved in at least one trial. FEvals denotes number of function evaluations, D and DIM denote search space dimension, and Δf and Df denote the difference to the optimal function value. Light brown lines in the background show ECDFs for target value 10^{-8} of all algorithms benchmarked during BBOB-2009.

Results

Results from experiments according to [2] on the benchmarks functions given in [1, 3] are presented in Figures 1, 2 and 3 and in Tables 1 and 2. The algorithm solves some of the moderate functions f1, f2, f5, f6, f14 and f21. Else, f8, f9, f11, f12, f13 are partially solved for dimensions 20.

Figure 3: ERT loss ratio versus given budget FEvals. The target value f_t for ERT (see Figure 1) is the smallest (best) recorded function value such that ERT(f_t) \leq FEvals for the presented algorithm. Shown is FEvals divided by the respective best ERT(f_t) from BBOB-2009 for functions $f_{1-f_{\rm M}}$ in 5-D and 20-D. Each ERT is multiplied by exp(CrE) correcting for the parameter crafting effort. Line: geometric mean. Box-Whisker error bar: 25-75%-ike with median (box), 10-90%-ike (caps), and minimum and maximum ERT loss ratio (points). The vertical line gives the maximal number of function evaluations in this function subset.

Conclusion

We have presented the results of the Particle Swarm Optimization algorithm with a Differential Evolution term, that does use information gathered during search for guiding its next stops following a social behavior not a genetic one. Those results provide a baseline comparison that every adaptive algorithm should outperform. Results have been obtained using the Black Box Optimization Benchmark 2010, which provides useful tools to analyze data in a graphical way.

to value (shaller values are betwer).								
f1-f24 in 5-D, maxFE/D=6158								
#FEs/D	best	10%	25%	med	75%	90%		
2	1.2	1.7	3.1	44	10	10		
10	0.72	3.2	3.5	49	5.8	50		
100	2.8	4.3	7.5	9.5	15	40		
1e3	7.1	9.4	24	38	70	91		
1e4	9.1	29	43	87	1.7e2	4.0e2		
RL _{US} /D	6e3	6e3	6e3	6e3	6c3	6e3		
f1-f24 in 20-D, maxFE/D=6152								
#FEs/D	best	10%	25%	med	75%	90%		
2	1.0	3.6	11	31	40	40		
10	4.7	5.1	7.2	10	32	2.0e2		
100	6.4	11	18	26	45	2.8e2		
1e3	22	29	41	80	3.0e2	4.7e2		
1e4	32	94	1.4e2	3.7e2	6.7e2	1.4e3		
1e5	99	2.0e2	3.5e2	6.2e2	3.7e3	6.2e3		
RLus/D	6e3	6e3	6e3	6e3	6e3	6e3		

Bibliography

- [1] S. H. Brooks. A discussion of random methods for seeking maxima. Operations Research, 6:244–251, 1958.
- [2] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE, 2009.
- [3] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2009: Experimental setup. Technical Report RR-6828, INRIA, 2009.
- [4] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009.
- [5] M. J. D. Powell. The NEWUOA software for unconstrained optimization without derivatives. Large Scale Nonlinear Optimization, pages 255–297, 2006.
- [6] J. Nelder and R. Mead. The downhill simplex method. Computer Journal, 7:308–313, 1965.
- [7] T Jayabarathi, Sandeep Chalasani, Zameer Ahmed Shaik, Nishchal Deep Kodali; "Hybrid Differential Evolution and Particle Swarm Optimization Based Solutions to Short Term Hydro Thermal Scheduling", WSEAS Transactions on Power Systems Issue 11, Volume 2, pp., ISSN: 1790-5060, 2007.
- [8] Piao Haiguo, Wang Zhixin, Zhang Huaqiang, "Cooperative-PSO-Based PID Neural Network Integral Control Strategy and Simulation Research with Asynchronous Motor Controller Design", WSEAS Transactions on Circuits and Systems Volume 8, pp. 136-141, ISSN: 1109-2734, 2009.
- [9] Lijia Ren, Xiuchen Jiang, Gehao Sheng, Wu B;"A New Study in Maintenance for Transmission Lines", WSEAS Transactions on Circuits and Systems Volume 7, pp. 53-37, ISSN: 1109-2734, 2008.
- [10] Kenneth Price. Differential evolution vs. the functions of the second ICEO. In Proceedings of the IEEE International Congress on Evolutionary Computation, pages 153–157, 1997.
- [11] Kenneth Price, Rainer M. Storn, and Jouni A. Lampinen. Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series). Springer- Verlag New York, Inc., 2005. ISBN 3540209506. URL http://portal.acm.org/citation.cfm?id=1121631.
- [12] K.V. Price. Differential evolution: a fast and simple numerical optimizer. In Fuzzy Information Processing Society, 1996. NAFIPS. 1996 Biennial Conference of the North American, pages 524–527, 1996. doi: {10.1109/NAFIPS.1996.534790}.

Authors' Information

Nuria Gómez Blas – Associate professor U.P.M Crtra Valencia km 7, Madrid-28031, Spain; e-mail: ngomez@eui.upm.es

Research: DNA computing, Membrane computing, Education on Applied Mathematics and Informatics

Luis F. de Mingo – Associate professor U.P.M Crtra Valencia km 7, Madrid-28031, Spain; e-mail: <u>Ifmingo@eui.upm.es</u>

Research:, Artificial Intelligence, Social Intelligence, Education on Applied Mathematics and Informatics