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P-SYSTEMS: STUDY OF RANDOMNESS WHEN APPLYING EVOLUTION RULES 

Alberto Arteta, Luis Fernández, Fernando Arroyo 

Abstract: Membrane computing is a recent area that belongs to natural computing. This field works on 
computational models based on nature's behavior to process the information. Recently, numerous models have 
been developed and implemented with this purpose. P-systems are the structures which have been defined, 
developed and implemented to simulate the behavior and the evolution of membrane systems which we find in 
nature. What we analyze in this paper is the power of the tools we currently have to simulate the randomness we 
find in nature. The main problem we face here, is trying to simulate non deterministic events by using 
deterministic tools. The goal we want to achieve is to propose an optimal method when simulating non 
deterministic processes. Talking about simulation of non deterministic method makes no sense when using 
deterministic tools; however we can get closer to the idea of non determinism by using more powerful 
randomness generators. 
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Introduction 

Natural computing is a new field within computer science which develops new computational models. These 
computational models can be divided into three major areas: 
• Neural networks.  
• Genetic Algorithms  
• Biomolecular computation.  
Membrane computing is included in biomolecular computation. Within the field of membrane computing a new 
logical computational device appears: The P-system. These P-systems are able to simulate the behavior of the 
membranes on living cells. This behavior refers to the way membranes process information. (Absorbing nutrients, 
chemical reactions, dissolving, etc) 
Membrane computing formally represents, through the use of P-systems, the processes that take place inside of 
the living cells. In terms of software systems, it is the process within a complex and distributed software. In 
parallel computational models, p-systems might be as important as the Turing machine is in sequential 
computational models.[Arroyo, 2001] 
In this paper, we study the current methods to implement the idea of randomness. Most of the times the function 
rnd is used for that purpose. By doing that we state that an important part of inner quality on nature is missed. We 
will prove that such function has low quality on terms of randomness.  When a p-system has a few evolution 
rules, this will not create any problem. However the entire simulation will degrade when the number of evolution 
rules increases. By proposing a new way of generating randomness we will get close to the idea of 'pure 
randomness' we find in nature and also we would be able to show a higher quality simulation. 
In order to do this, we will take the following steps: 
• Introduction to P-systems theory; 
• Analysis of rules application process; 
• Analysis of the Random Function 
• Study of the current methods to implement non-determinism 
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• Proposal of a new method. 
• Conclusions and further work. 

Introduction to P-systems Theory 

In this section we will study into detail all of the theories related to the paradigm of the P-systems. A P-system is a 
computational model inspired by the way the living cells interact with each other through their membranes. The 
elements of the membranes are called objects. A region within a membrane can contain objects or other 
membranes. A p-system has an external membrane (also called skin membrane) and it also contains a 
hierarchical relation defined by the composition of the membranes. A multiset of objects is defined within a region 
(enclosed by a membrane). These multisets of objects show the number of objects existing within a region. Any 
object 'x' will be associated to a multiplicity which tells the number of times that 'x' is repeated in a region. 
 

 
Fig. 1. The membrane's structure (left) represented in tree shape (right) 

 
According to Păun 's definition, a transition P System of degree n, n > 1 is a construct: [Păun 1998] 

( )0,1,11 ),),..((,,..,,, iRRV nnn ρρωωμ=∏  
where: 
- V is an alphabet; its elements are called objects; 
- μ is a membrane structure of degree n, with the membranes and the regions labeled in a one-to-one manner 

with elements in a given set ; in this section we always use the labels 1,2,..,n; 

- nii ≤≤1ω , are strings from *V  representing multisets over V associated with the regions 1,2,..,n of μ  

- niRi ≤≤1 , are finite set of evolution rules over V associated with the regions 1,2,..,n of μ; iρ  is a partial 

order over niRi ≤≤1 , specifying a priority relation among rules of iR . An evolution rule is a pair (u,v) 
which we will usually write in the form vu →  where u is a string over V and v=v’ or v=v’δ  where v’ is a 

string over { }( ) { }( )njinVouthereV j ≤≤×× 1, ∪ , and δ   is a special symbol not in. The length of u is 
called the radius of the rule vu →  

- oi  is a number between 1 and n which specifies the output membrane of  ∏  
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Let U be a finite and not an empty set of objects and N the set of natural numbers. A multiset of objects is defined 
as a mapping:  

1
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ua
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Where ia  is an object and iu  its multiplicity. 

As it is well known, there are several representations for multisets of objects. 
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Evolution rule with objects in U and targets in T is defined by ( )δ,,cmr =   

where ( ) ( ) { }dissolvetonotdissolvetoandVxTMcVMm ,, ∈∈∈ δ  
From now on 'c' will be referred to as the consequent of the evolution rule 'r' 
The set of evolution rules with objects in V and targets in T is represented by R (U, T). 
We represent a rule as: 

δyxoryx →→  where x is a multiset of objects in M((V)xTar) where Tar ={here, in, out} and y is the 
consequent of the rule. When δ  is equal to "dissolve", then the membrane will be dissolved. This means that 
objects from a region will be placed within the region which contains the dissolved region. Also, the set of 
evolution rules included on the dissolved region will disappear.  
P-systems evolve, which makes it change upon time; therefore it is a dynamic system. Every time that there is a 
change on the p-system we will say that the P-system is in a new transition. The step from one transition to 
another one will be referred to as an evolutionary step, and the set of all evolutionary steps will be named 
computation. Processes within the p-system will be acting in a massively parallel and non-deterministic manner. 
(Similar to the way the living cells process and combine information). 
We will say that the computation has been successful if:  

1. The halt status is reached. 
2. No more evolution rules can be applied. 
3. Skin membrane still exists after the computation finishes. 

Analysis of Rules Application Process 

In this paper we focus on the application of evolution rules.  Every region of a p_system contains a multiset of 
symbol-objects, which correspond to the chemicals swimming in a solution in a cell compartment; these 
chemicals are considered here as unstructured, that is why we describe them by symbols from a given alphabet. 
The objects evolve by means of evolution rules, which are also localized, associated with the regions of the 
membrane structure. There are three main types of rules:[Păun 1998] 

1. Multiset rewriting rules (one uses to call them, simply, evolution rules), 
2. Communication rules, 
3. Rules for handling membranes. 

In this section we present the first type of rules. They correspond to the chemical reactions possible in the 
compartments of a cell, hence they are of the form vu → , where u and v are multisets of objects. However, in 
order to make the compartments cooperate, we have to move objects across membranes, and to this aim we add 
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target indications to the objects produced by a rule as above (to the objects from multiset v).  These indications 
are: "here, in, out", with the meaning that an object having associated the indication here remains in the same 
region, one having associated the indication in goes immediately into a directly lower membrane, non-
deterministically chosen, and out indicates that the object has to exit the membrane, thus becoming an element of 
the region surrounding it. An example of evolution rule is: 

aab →(a, here)(b, out)(c, here)(c, in) 
(this is the first of the rules considered in Section 4, with target indications associated with the objects produced 
by rule application ). After using this rule in a given region of a membrane structure, two copies of a and one b are 
consumed (removed from the multiset of that region), and one copy of a, one of b, and two of care produced; the 
resulting copy of a remains in the same region, and the same happens with one copy of c (indications here), while 
the new copy of b exits the membrane, going to the surrounding region (indication out), and one of the new 
copies of c enters one of the child membranes, non-deterministically chosen. If no such child membrane exists, 
that is, the membrane with which the rule is associated is elementary, then the indication in cannot be followed, 
and the rule cannot be applied. In turn, if the rule is applied in the skin region, then b will exit into the environment 
of the system (and it is "lost" there, as it can never come back). In general, the indication here is not specified (an 
object without an explicit target indication is supposed to remain in the same region where the rule is applied). 
A rule as above, with at least two objects in its left hand side, is said to be cooperative; a particular case is that of 
catalytic rules, of the form ca→cv, where c is an object (called catalyst) which assists the object a to evolve into 
the multiset v; rules of the form a→ v, where a is an object, are called non-cooperative. 

The rules can also have the form u → vδ  , where δ  denotes the action of membrane dissolving: 
if the rule is applied, then the corresponding membrane disappears and its contents , object and membranes 
alike, are left free in the surrounding membrane; the rules of the dissolved membrane disappear at the same time 
with the membrane. The skin membrane is never dissolved.  
The communication of objects through membranes reminds the fact that the biological membranes contain 
various (protein) channels through which the molecules can pass (in a passive way, due to concentration 
difference, or in an active way, with a consumption of energy), in a rather selective manner. However, the fact 
that the communication of objects from a compartment to a neighboring compartment is controlled by the 
"reaction rules" is mathematically attractive, but not quite realistic from a biological point of view, that is why there 
were also considered variants where the two processes are separated: the evolution is controlled by rules as 
above, without target indications, and the communication is controlled by specific rules (by symport/antiport 
rules). 
We have arrived in this way at the important feature of P systems, concerning the way of using the rules. The key 
phrase in this respect is: in the maximally parallel manner, non-deterministically choosing the rules and the 
objects. 
More specifically, this means that we assign objects to rules, non-deterministically choosing the objects and the 
rules, until no further assignment is possible. More mathematically stated, we look to the set of rules, and try to 
find a multiset of rules, by assigning multiplicities to rules, with two properties: (i) the multiset of rules is applicable 
to the multiset of objects available in the respective region, that is, there are enough objects in order to apply the 
rules a number of times as indicated by their multiplicities, and (ii) the multiset is maximal, no further rule can be 
added to it (because of the lack of available objects). 
Thus, an evolution step in a given region consists in finding a maximal applicable multiset of rules, removing from 
the region all objects specified in the left hand of the chosen rules (with the multiplicities as indicated by the rules 
and by the number of times each rule is used), producing the objects from the right hand sides of rules, and then 
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distributing these objects as indicated by the targets associated with them. If at least one of the rules introduces 
the dissolving action, then the membrane is dissolved, and its contents become part of the immediately upper 
membrane – provided that this membrane was not dissolved at t he same time, a case where we stop in the first 
upper membrane which was not dissolved (at least the skin remains intact). [Păun 1998] 

Random Function 

In common languages as C rand function is defined as a linear congruential generator. A linear congruential 
generator (LCG) represents one of the oldest and best-known pseudorandom number generator algorithms. The 
theory behind them is easy to understand, and they are easily implemented and fast. 
The generator is defined by the recurrence relation: 

mcaXX nn mod)(1 +=+  

where Xn is the sequence of pseudorandom values, and:  
m<0  the "modulus"  

ma <<0  the "multiplier"  
mc <<0  the "increment" (the special case of c = 0 corresponds to Park Miller RNG)  

mX << 00  the "seed" or "start value"  

are integer constants that specify the generator. 
While LCGs are capable of producing pseudorandom numbers, this is extremely sensitive to the choice of the 
coefficients c, m, and a.[Bravo, 2002]  

The most efficient LCGs have an m equal to a power of 2, most often m = 232 or m = 264, because this allows 
the modulus operation to be computed by merely truncating all but the rightmost 32 or 64 bits. The following table 
lists the parameters of LCGs in common use, including built-in rand() functions in various compilers.  
 

 
Fig. 2. Relation between random function and LCG parameters for each compiler. 

 
Historically, poor choices had led to ineffective implementations of LCGs.  A particularly illustrative example of 
this is RANDU which was widely used in the early 1970s and resulted in many results that are currently in doubt 
because of the use of this poor LCG. Moreover, If a linear congruential generator is seeded with a character and 
then iterated once, the result is a simple classical cipher called an affine cipher; this cipher is easily broken by 
standard frequency analysis. 
When using a LCG, the numbers are distributed into Hyperplanes. If a set of random numbers are part of the 
same  Hyperplane, then the randomness is poor. This is what happens when we use LCGs to generate random 
numbers. See Fig 3. 
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Fig. 3. Random distribution provided by LCG: mcaXX nn mod)(1 +=+  

 
It seems that when using any of the compilers mentioned above, the determinism in our model practically does 
not exist. Moreover, when we fix a seed, we can totally reproduce the same sequence of numbers over and over 
again. In other words, the same seed generates the same output every time.  
Poor randomness and predictability are signs of a deterministic process. This makes no reliable the idea of 
generating a non deterministic process as it is the one occurring within the living cells. 

Rules Applicability: Implementation of Non Determinism 

Applying evolution rules in a p_system is meant to be purely random.  The way that reactions occur within the 
living cells is non deterministic. A common method to implement this behavior is to use the RND function. 
Nowadays, there are several methods of application of evolution rules which have been implemented. Algorithms 
as Step by step Max applicability benchmark, Minimal applicability benchmark [Fernandez,2006] . All of them 
study this point and try to improve the performance when applying rules. Here is an example of algorithm that 
applies the rules based on an applicability benchmark. 
 

 
Fig 4. Maximal applicability benchmark algorithm. 
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As shown, there are two calls to the random function. The current implementation of the random function makes 
the entire algorithm not very accurate on simulating the inherent non determinism within the living cells. The main 
reason is because the use of LCG which produces creates poor randomness and generates predictable output 
streams, while in a real scenario this should not occur. 

Rules Applicability: ICG, New Implementation Proposal 

In order to simulate randomness better, we must use more accurate random number generators. 
The random generator we propose is able to simulate randomness in a better way. As the LCGs are proved not 
to be good for this simulation, We focus on the non linear ones. 
The non linear congruential generator we propose here, is an Inversive congruential generators (ICGs). 
Inversive congruential generators are a type of nonlinear congruential pseudorandom number generator, which 
use the modular multiplicative inverse [2] (if it exists) to generate the next number in a sequence. The standard 
formula for an inversive congruential generator is 

mcaXX nn mod)(1 +=+  

Sometimes the Parallel Hyperplanes phenomenon inherent in LCGs may cause adverse effects to certain 
simulation applications because the space between the hyperplanes will never be hit by any point of the 
generator, and the simulation result may be very sensitive to this kind of regularities. Inversive Congruential 
Generators (ICG) are designed to overcome this difficulty. It is a variant of LCG: 

where  0=c if 0=c  and Mcc mod1−= . To calculate c , one can apply the reverse of Euclid's algorithm to 

find integer solutions for 1=+ KMcc  .  
Although the extra inversion step eliminates Parallel Hyperplanes (see Fig. 5), it also changes the intrinsic 
structures and correlation behaviors of LCGs. ICGs are promising candidates for parallelization, because unlike 
LCGs, ICGs do not have long-range autocorrelations problems. 
 

 

Fig. 5. Random distribution produced by ICG   mcaXX nn mod)(1 +=+  
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As shown the numbers are not distributed into Hyperplanes. This improves the simulation in terms of randomness 
which get us much closer to the idea of non determinism we are looking for. 

Thus, the implementation of our random function to be used by our p-systems is: 

 

Function MCnICGRANDOMAnICGRANDOM mod))1(_*()(_ +−=  where Mn ≤≤0  
and M the number of evolution rules. The parameters we propose are: 

A=237 

M= 322  

C=1265 

RANDOM(0) is the seed of the ICG and it can be set to any arbitrary number. 

As shown in Figure 2 it is proved that this ICG does not generate parallel hyperplanes which get us closer to the 
idea of pure randomness in our model. 

Conclusion and Further Work 

In this paper, we have studied some topics of membrane computing. As a part of this study, we have explained 
some concepts of the p-systems. Concepts such as: 

1. Components 

2. Interactions between the components. 

3. The evolution of a p-system. 

Moreover, we have focused our work on a specific part of the p-systems: Evolution rules application. The way 
that rules are applied in a region must be purely random. In order simulate this behavior we see that random 
function has been used by most developers. Most Compilers have implemented the random function by using 
LCG. After analyzing LCG we have concluded that it is a poor tool in terms of randomness and non determinism. 
As stated, is practically impossible to simulate a non deterministic process through a deterministic machine. 
However we can get closer to the idea of non determinism by increasing the quality of the random number 
generators. 

By implementing and using a new random function we have been able to provide a better simulation in terms of 
randomness. This function uses the ISG we proposed in the above section. The random numbers generated by 
ICG are not placed in Parallel hyperplanes which improves simulation in terms of randomness. 

Although it is practically impossible to simulate a non deterministic process by using deterministic tools as 
computers, we can improve the quality of simulation by using new random generators. This can be noticeable 
when the number of evolution rules increases within a given region.  Although we approached the idea of 
randomness in the evolution rules application process, we still need to work on avoiding predictability as  we 
could guess a given random number by knowing the initial value or seed of the ICG. [Blackburn, 2004] In the 
future, we will try to improve even more the simulation explained on this paper in terms of randomness and non 
determinism.   
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