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Hybrid Intelligent Systems 

ADAPTIVE GUSTAFSON-KESSEL FUZZY CLUSTERING ALGORITHM BASED ON 
SELF-LEARNING SPIKING NEURAL NETWORK 

Yevgeniy Bodyanskiy, Artem Dolotov, Iryna Pliss 

Abstract: The Gustafson-Kessel fuzzy clustering algorithm is capable of detecting hyperellipsoidal clusters of 
different sizes and orientations by adjusting the covariance matrix of data, thus overcoming the drawbacks of 
conventional fuzzy c-means algorithm. In this paper, an adaptive version of the Gustafson-Kessel algorithm is 
proposed. The way to adjust the covariance matrix iteratively is introduced by applying the Sherman-Morrison 
matrix inversion procedure. The adaptive fuzzy clustering algorithm is implemented on the base of self-learning 
spiking neural network known as a realistic analog of biological neural systems that can perform fast data 
processing. Therefore, the proposed fuzzy spiking neural network that belongs to a new type of hybrid intelligent 
systems makes it possible both to perform fuzzy clustering tasks efficiently and to reduce data processing time 
considerably.  
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Introduction 

Computational intelligence aims to achieve biologically and naturally plausible computing. Data clustering 
methods as a part of computational intelligent means has been successfully evolved in these directions over the 
several last decades.  
On the one hand, data clustering methods progressed considerably toward more realistic approaches of clusters 
detection and separation. Unnatural ‘all or none’ membership restriction of hard clustering was overcome by fuzzy 
probabilistic clustering [Bezdek, 1981]. High degree of membership that fuzzy probabilistic clustering unnaturally 
produced for outliers that were equidistant from clusters centers was avoided by applying fuzzy possibilistic 
approach [Bezdek, 2005]. Adaptive versions of the mentioned clustering methods were proposed allowing of data 
processing in on-line mode [Park, 1994; Bodyanskiy, 2005]. Finally, the Gustafson-Kessel fuzzy clustering 
algorithm made it possible to detect clusters of different sizes and orientations [Gustafson, 1979; Krishnapuram, 
1999].   
On the other hand, data clustering means enriched by biologically plausible methods of data processing, namely, 
self-learning spiking neural networks [Natschlaeger, 1998; Bohte, 2002; Gerstner, 2002]. Being highly realistic 
models of biological neural systems, self-learning spiking neural networks appeared to be a considerably 
powerful and fast clustering tool of computational intelligence. Moreover, new type of hybrid intelligent systems 
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that combined capabilities of self-learning spiking neural networks and fuzzy probabilistic and possibilistic 
clustering approaches was shown to be successfully applied in various data clustering problems [Bodyanskiy, 
2008a-f; Avdiyenko, 2008]. 
In this paper, adaptive version of the Gustafson-Kessel fuzzy clustering algorithms is introduced. It is shown how 
the proposed algorithm can be implemented on the base of self-learning spiking neural network.  

Adaptive Version of the Gustafson-Kessel Fuzzy Clustering Algorithm 

In the general case, the clustering quality criterion can be stated as following: 
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where ( ) [ ]1,0)( ∈μ kxj  is membership level of the input pattern )(kx  to the j -th cluster,  jv  is the center of the 
j -th cluster, N  is the number of input patterns, m  is the number of clusters, 0≥ζ  is the fuzzifier that 

determines boundary between clusters and controls the amount of fuzziness in the final partition, A  is a norm 
matrix that defines distance measure. Under restriction  
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minimization of (1) by applying the method of indefinite Lagrange multipliers leads us to the following solution: 
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In the case when norm matrix A  is the identity matrix and 2=ζ , equations (3)-(4) present conventional fuzzy c-
means algorithm. The Gustafson-Kessel algorithm uses the Mahalanobis distance measure, i.e. the inverse 

covariance matrix 1−Σ j  for the j -th cluster is used as a norm matrix in (3).  

Minimization of (1) under restriction (2) based of the Arrow-Hurwicz-Uzawa gradient method [Arrow, 1958] 
produces the following recursive solution for the Mahalanobis distance measure: 
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where 0)( >η kv  is a learning rate that defines to what extent information retrieved from new patterns will 
override old information . 
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Let us obtain recursive expression for the inverse covariance matrix. The covariance matrix for k  input patterns 
is 
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where )(kx  is the average over k  patterns. For a new incoming pattern )1( +kx , the covariance matrix can be 
written in form of  
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By applying the Sherman-Morrison matrix inverse procedure 
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to (8), the inverse covariance matrix  can be expressed in recursive form: 
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Finally, the recursive average upon incoming pattern )1( +kx  is  
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In this paper, it is proposed to use centers of spiking neurons that are adjusted on each step of self-learning 
spiking neural network learning. This way, clusters centers adjustment (6) becomes unnecessary. 

Self-Learning Spiking Neural Network 

Architecture of self-learning spiking neural network is depicted on Figure 1. As illustrated, it is a heterogeneous 
two-layered feed-forward neural network with lateral connections in the second hidden layer [Bohte, 2002]. 

The first hidden layer performs pulse-position transformation of 1×n -dimensional input patterns )(kx  (here, 
Nk ,...,1,0=  is a pattern number) to the input vector of spikes ))((]0[ kxt  where each spike is defined by its firing 

time. The transformation is performed by population coding that implies that an input ),(kxi   ,,...,2,1 ni =  is 
processed at the same time by a pool of h  receptive neurons ,liRN  hl ,...,2,1= . 
As a rule, a receptive neuron activation function is bell-shaped (Gaussian usually), and activation functions of the 
neurons within a pool are shifted, overlapped, and of different widths. Generally firing time of a spike emitted by 
receptive neuron lies in a certain interval ],0[ ]0[

maxt  referred to as a coding interval and is defined by the 
expression 

 ( )( )⎣ ⎦iliimaxili ckxtkxt σ−ψ−= ,)(1))(( ]0[]0[]0[ , (12) 

where ⎣ ⎦•  is the floor function, ),,( ••ψ  ,]0[
lic  and iσ  are the receptive neuron’s activation function, center, and 

width respectively.  

It is worth to note that a pool of receptive neurons ,liRN  hl ,...,2,1=  can be treated as a certain linguistic 
variable of input data and each receptive neuron (more precisely, fuzzy receptive neuron) within the pool – as its 
linguistic term with membership function ( ))(kxiliψ  [Bodyanskiy, 2008d]. Having any a priori knowledge of data 
structure, it is possible to adjust the first layer neurons activation functions as membership functions to fit the 
knowledge and thus, to get better clustering results. 
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Figure 1. Self-learning spiking neural network architecture 

The second hidden layer consists of m  spiking neurons jSN , mj ...,,2,1=  ( m  – number of clusters). They are 
connected with neurons of the previous layer by multiple synapses. As shown on Figure 2, a multiple synapse 

jliMS  consists of a set of q  subsynapses with different time delays pd , 01 >− −pp dd , ]0[
max

1 tdd q >− , and 

varying weights p
jliw  (here qp ...,,2,1= ). It should be noted that number of subsynapses within a multiple 

synapse are fixed for the whole network. Having a spike ))((]0[ kxt ili  from the li -th receptive neuron, the p -th 
subsynapse of the j -th spiking neuron produces a delayed postsynaptic potential 
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where )(•ε  is a spike-response function usually described by the expression 
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τ  is the membrane potential decay time constant whose value can be obtained empirically, )(•H is the Heaviside 
step function. Output of the multiple synapse jliMS  forms total postsynaptic potential 
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Figure 2. Multiple synapse 

Each incoming total postsynaptic potential contributes to membrane potential of spiking neuron jSN   as follows: 
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Spiking neuron jSN  generates at most one outgoing spike ))((]1[ kxt j  during a simulation interval (the 

presentation of an input pattern )(kx ), and fires at the instant the membrane potential reaches firing threshold 
sθ . After neuron firing, the membrane potential is reset to the rest potential (0 usually) until the next input pattern 

is presented. 
The spiking neuron described above corresponds to the integrate-and-fire model that is the one of the well-known 
models of a biological neuron [Gerstner, 2002]. 
Spiking neurons are linked with lateral inhibitory connections that disable all other neurons to fire after the first 
one has fired. In other words, lateral connections leads spiking neurons to fire according to the ‘winner-takes-all’ 
rule. After learning stage, each spiking neuron firing time reflects the distance of the input pattern to the neuron 
center. Thus, pattern supplied to the learned spiking neural network fires the spiking neuron whose center is the 
closest to it. This way self-learning spiking neural network performs clusters separation.  
The purpose of the learning algorithm of self-learning spiking neural network is to move the center of the neuron-
winner closer to input pattern by adjusting the neuron synaptic weights. The weights are adjusted according to the 
temporal Hebbian rule in the following way: weights of those subsynapses which contributed to the neuron’s firing 
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are strengthened, whereas weights of subsynapses which did not contribute are weakened. As a rule, the 
temporal Hebbian rule used in spiking neural networks learning has the following form [Berredo, 2005]: 
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where K  is the epoch number, )(•ηw  is the learning rate, α , β , ν  are shape parameters of the learning 
function. 
One can readily see that the unsupervised learning of the spiking neurons layer is identical to the one of self-
organizing maps (SOM). 

Spiking Neuron Center 

A spiking neuron center is considered  to represent a spiking neuron response to the input pattern in a convenient 
way. In the general case, it is considered to possess the following property: the closer input pattern is to the 
neuron’s center, the earlier output spike fires. Apparently, the earliest time of spiking neuron response can 
appears when all postsynaptic potentials reach the neuron soma simultaneously, i. e. the firing time of outgoing 
spike depends on synchronization degree of incoming spikes. It is worth to note here that synchronization 
phenomena is of primary importance in nature [Pikovsky, 2001].  
In this work, spiking neuron center calculation is required to obtain the difference of incoming pattern and cluster 
center (represented by the neuron center) )1()1( +−+ kvkx j  that is used in (5). Since the neuron center 
represents temporal aspect of the network functioning, we pursue the temporal difference of the input vector of 

spikes and the center ]1[]0[ ))(( jckxt −  ( ]1[
jc  is the center of spiking neuron jSN ). Apparently, original form of 

pattern )(kx  should be replaced with time-pulsed form ))((]0[ kxt  in (5), (10), and (11) in this case. 
There exist several ways to define spiking neuron center formally. The ones that were successfully used in fuzzy 
clustering are the Natschlaeger-Ruf center [Natschlaeger, 1998, Bodyanskiy, 2008c] and the Goren center 
[Goren, 2001, Avdiyenko, 2008]. Both of them requires calculation of the mean weighted synaptic delay jlid . In 
this paper, it is proposed to calculate it in a general way, by using the quasi-arithmetic mean [Kolmogorov, 1985]: 
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where )(•f is a strictly monotonic function. 

T. Natschlaeger and B. Ruf proposed to calculate the center of spiking neuron jSN  as follows: 

 }1,1|min{]1[ nbhaddc jabjlijli ≤≤≤≤−= , (20) 
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spikes as follows: 
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 ))((}1,1|))((max{))(( ]0[]0[ kxtnbhakxtkx ilibabili −≤≤≤≤=ρ , (21) 

the difference in (5) will be 

 ]1[))(()1()1( jj ckxkvkx −ρ=+−+ . (22) 

Goren center does not require the input vector of spikes transformation:  

 jlijabjli dnbhadc −≤≤≤≤= }1,1|max{]1[ , (23) 

 ]1[]0[ ))(()1()1( jj ckxtkvkx −=+−+ . (24) 

It is notable that the Natschlaeger-Ruf center takes into account only the synchronization degree, whereas the 
Goren centers incorporates also temporal distance of spikes and the origin of coding interval. Anyway, even the 
Goren center does not reflect all peculiarities of spiking neuron firing. For example, it does not consider how value 
of firing threshold sθ  influences on the neuron firing time. Pursuing a center definition that would describe spiking 
neuron firing more precisely is a purpose of the further work.  
In summary, the whole learning process of the proposed hybrid system can be formulated. Upon supplying a new 
pattern, self-learning spiking neural network adjusts the neurons centers using learning algorithm (17), (18) (as a 
rule, a few epochs are sufficient). Then a new fuzzy partitioning is performed according to (5), (10), and (11) 
using either Natschlaeger-Ruf (20)-(22) or Goren centers (23),(24). The simulation experiments show good 
results of the proposed hybrid system using in various data clustering problems solving. 

Conclusion 

The adaptive version of the Gustafson-Kessel fuzzy clustering algorithm is proposed. The new hybrid system is 
designed on the based of self-learning spiking neural network. It utilizes temporal difference of incoming vector of 
spikes and spiking neurons centers to perform fuzzy partitioning. The obtained hybrid system allows of combining 
tractability of the Gustafson-Kessel algorithm and velocity capabilities of spiking neural network and processes 
data in on-line mode. 
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