
International Book Series "Information Science and Computing" 
 

 

63

GAME-BASED APROACH IN IT EDUCATION 

Olga Shabalina, Pavel Vorobkalov, Alexander Kataev, Alexey Tarasenko 

Abstract: A concept of using game based approach for IT education is presented. The learning course notation 
rules for using in games are suggested. Techniques for integration of learning components to the game are 
described. The realization of the learning game for programming language C++ is shown. 

Keywords: educational games, digital game-based learning, course notation, game engine, learning engine. 

ACM Classification Keywords: K.3.1 Computer Uses in Education; K.3.2 Computer and Information Science 
Education 

Conference: The paper is selected from Fourth International Conference "Modern (e-) Learning" MeL 2009, Varna, Bulgaria, 
June-July 2009  

Introduction 

Software development is a continuously expanding area. At present time are more than one million computer 
software engineers in Russia. They are employed in most industries and their largest concentration is in computer 
systems design and related services. Computer software engineers is one of the occupations projected to grow 
the fastest, their employment is projected to increase by 38% over the 2006 to 2016 period [1]. Demand for 
computer software engineers will increase for a number of reasons. Organizations adopt and integrate new 
technologies and seek to maximize the efficiency of their computer systems. Computer networking growth needs 
specialists for developing Internet, intranet, and World Wide Web applications. Electronic data-processing 
systems continue to become more sophisticated and complex. Information security concerns have given rise to 
new software needs. Businesses invest heavily in software that protects their networks and vital electronic 
infrastructure from attack. Implementing, safeguarding, and updating computer systems and resolving problems 
will fuel the demand for growing numbers of high-quality software engineers. 

From the other hand the IT labor market growth contradicts a predicted shortage of quality computer engineers IT 
skills [2]. Admissions and retention rates to some university computer software specialties are falling and there 
are serious concerns about the quality of the software which they create. Economic crisis has changed the 
situation in Russia and all over the world, staff reductions take place in different areas and IT area as well, but 
those of lower professional skill are the first ones being reduced. Thus the problem of training of high-quality 
software engineers is still being topical.  

Teaching computer software engineers faces some specific problems. A set of basic skills needs to be 
understood and applied at once from very early in the learning process. The IT field is being dynamically 
changed, and sometimes trainers are behind the time and behind trainees [3]. To a great extent it is because of 
trainers and trainees are from totally separate worlds. Trainers and teachers raised in a pre-digital generation and 
educated in the styles of the past, while trainees, so called  Games Generations ((N-gen, D-gen)[3], raised in the 
digital world and are native speakers of the digital language of computers, video games and the Internet. The 
trainees find today’s training (and education) so incredibly boring that they don’t want – and often refuse – to do it. 

There are a number of approaches to making the education easier and more appealing, and a remarkably 
promising one from these is using computer games. Marc Prensky [3] suggested a new approach – combining 



No:12 – Human Aspects of Artificial Intelligence 
 

 

64 

together serious learning and computer games into a newly medium — Digital Learning Games. Use of computer 
games for non-entertainment purposes (so called Serious Games), and its sub-field  Digital Game-Based 
Learning  are an emerging area of research and interest to this area is growing rapidly. 

Game-based approach achieves high learning results in areas that are difficult to study and where gaining skills is 
of importance. To a great extent it can be referred to the computer science disciplines. One can mention such 
subjects, demanding skill gaining, as algorithmization and programming, artificial intelligence, computer graphics 
and so on. 

By now the potential of digital game-based learning remains still largely unrealized, and design and 
implementation of new games in education process is in great demand. 

IT games concept 

Saying ‘educational game’ we mean a learning system, which realizes some or all components of learning 
process (learning theory, gaining skills and experience, estimation of knowledge level) in a game context. Our 
approach is based on three positions: learner must get the course information through its interpretation in a game 
world; learner must see the result of his learning in a game context; results of learning must influence game 
results.  

We have analyzed what kinds of games would be more effective and suitable for educational games on ICT 
subjects. We decided to use core games for learning courses in a whole and for gaining skills.  

Core games need sequential logical playing and are time-taking. The idea of educational core games is based on 
the correspondence between learning course and gameplay. Normally the game scenario consists of game 
levels. Each level includes several game quests. In educational game quests include some course information 
and assignments for getting practice.  Each assignment solution needs knowledge of related course chapters, on 
the other hand information and assignments are associated with a game story. Thus levels completing forces 
player to learn new course chapters and solve level assignments, so the game scenario relates to the learning 
course.  

The correlation between game levels and course chapters provides using such games both for individual learning 
and for using at universities or at schools. Teachers might use the game level by level according to their studies, 
so learners would complete playing the game when they complete studying the course. 

A game-related course description has been elaborated for learning trough games. A course content should be 
divided into theory information blocks and. Each block relates to one or several chapters of the course. 
Information blocks can be of two types: displayable and reference blocks. Displayable information blocks are 
parts of the game script and are displayed for a player. Reference information blocks contain additional 
information on the corresponding chapter and are available for the player on demand. A set of displayable and 
reference information blocks form full learning course theory. Assignments should be described as assignment 
blocks and include assignment description, solution description, and solution interpretation. Assignment 
description is a displayable information block, representing different kinds of quests. Assignment solution requires 
writing some text, answering questions, testing or fulfilling some other actions. Solution description includes 
solution testing rules or/and solution examples. Solution interpretation includes right and wrong solutions 
visualization techniques or/and their influence on a gameplay.  



International Book Series "Information Science and Computing" 
 

 

65

Course description is made by an instructional designer and a game coder in three stages (Table 1). First stage 
should be made by an instructional designer. This level describes blocks’ content, their sequence and links. 
Second stage is made both by instructional designer and a game coder. A game coder describes solution testing 
types and solution visualization techniques. The last stage is made by a game coder. For coding information 
blocks and links mark-up language is used. Blocks sequences, assignment interpretation and solution blocks are 
coded in an engine input language. 
 

Table 1: Course description levels  

Level  Type of description  Who acts?  Description language  

Logical  
level  

Blocks’ content  
Blocks’ sequence  
Blocks’ links  

Course designer  Natural language  

Extended  
logical  
level  

Solution testing types  
Solution visualization techniques  

Instructional designer 
Coder  

Course description language  

Implementation  
level  

Codes of information blocks  
Links  
Blocks sequences  
assignment interpretation blocks  
Solution blocks  
Marked up text presentation  
Assignment solutions  

Coder  Engine input languages:  
(mark-up language,  
scripting language ) 

 

We elaborated techniques for integration of learning components to the game (Table 2). We represent learning 
course using Formatted text (HTML) with hyper-links support. While playing a learner must solve assignments. 
We use engine input languages, depending on a learning course, for the solutions interpretation. We check the 
solutions using matching techniques.  

One of the modern tendencies in the field of e-learning is using so called adaptive learning systems.  Such kind of 
systems can adapt to the needs of users and provide individualized learning. As we plan to develop adaptive 
learning games, we use Bayesian approach for estimation of a learner knowledge level [4] and nonlinear story for 
adaptation of learning process to individual users. 

Implementation 

We started with learning games on programming languages, because our students start the learning process 
from learning programming languages, a fundamental subject for software developers. Mastering programming is 
a difficult-to-learn subject. It needs a high-level of abstraction, without a direct feedback to a real world, and 
includes skill gaining. To a great extend learning programming languages means gaining skills in programming. 
We’ve found out that there are only few examples of games on learning programming, though this subject is very 
good for teaching through games. These games use specific built-in language (KuMir, ColoBot, CeeBot), or they 
need an advanced level of programming for playing (AI Competition Games). They are not suitable for learning 
university programming courses in a whole. 



No:12 – Human Aspects of Artificial Intelligence 
 

 

66 

Our concept [5] is based on a Role Playing Game (RPG) genre. The main game character is a transformer, who 
lives in a virtual world. A player can program different transformer shapes and his behavior. Different situations in 
the game require different characteristics of the main character. Transforming shape allows players to get optimal 
character parameters for playing. At the beginning a player programs the basic character abilities (moving, 
jumping, and attacking). The results of programming are used by the player to control character behavior in the 
game. Then the player can program controlling algorithms for intelligent behavior of the character (overcoming 
different obstacles, going out labyrinths and so on). Effectiveness of the code determines effectiveness of 
character behavior. Unreasonable or foolish behavior prompts player to improve program code. Thus the player 
obtains knowledge and gains skills while playing.  
 

Table 2: Techniques for integration of learning components 

Learning components Techniques Realization 

Course presentation Formatted text with hyper-links support  HTML  

Gaining skills Solving assignments (using Input 
language) 

Depends on an engine 
input language 

Estimation of knowledge level Solution verification (comparison with a 
set of right solutions)  

Matching techniques  

Dependence of a game process on a 
learning process  

Only right solutions enable the game 
process 
Nonlinear story  

Adaptive techniques 
Bayesian approach  

 

As it was mentioned above, each learning course has some specific characters. For learning programming 
languages they are: input language for assignment solutions is programming language and correspondingly 
assignment solution itself is a programming code. We use two techniques for checking programming code: 
verification (checking source code using corresponding rules) and running (executing source code and checking 
the result). We use verification for checking assignments that have simple solutions (simple code) for a player. 
Real implementation methods using for realization of these solutions in the game are much more complicated. 
Interpretation of right solutions of verifiable type uses the real implementation methods. Methods, showing that 
the assignment hasn’t been executed, are called for interpretation of wrong solution of verifiable type.  

Verification method is based on regular expressions. Verification of programming code requires specialized 
matching because of more than one (practically infinite) number of possible right solutions. The specialized library 
has been developed for taking into considerations of these peculiarities (different possible identifiers names, 
blocks order, notations of mathematical expressions). 

For visualization of runnable solution the code of solution is being executed a player can see the result of his 
coding directly through game characters behavior. Execution results can be either numbers (as calculation 
results) or reaching some goals (e.g., a game character has arrived to a given point using the elaborated code).  
Execution results are compared with right solution results. Code running allows checking solutions not provided 
by course authors, but having the same results. Examples of checking ways are shown in the Table 3. 
 



International Book Series "Information Science and Computing" 
 

 

67

Table 3: Examples of checking ways 

Solution check  Description  Example (C++ code) 

Verification  Comparison of code with correct solutions provided 
by course developers 

MoveForward()  
 {  
      x++;  
 }  

Running  Executing source code and checking the result while(!WallBehind())  
 { 
       MoveForward(); 
 } 

 

Game architecture is based on common game engine architecture, but it is extended for using in educational 
games and consists of two high-level subsystems: a game engine and a learning engine. The game engine is 
based on the graphical engine Ogre3D and enlarged with game logic and advanced user interface (for advanced 
text displaying and editing). Script core provides game engine modules interaction. Using scripts simplifies game 
logic programming and avoids recompiling game engine after learning course modification.  The learning engine 
completes game engine functions with learning process support, which includes information course blocks and 
assignments control. Learning engine modules and routines are exposed to scripting core for organizing course 
sequence control and assignments solutions check from game scripts.  

Game implementation is based on free for commercial use libraries and utilities (Table 4).  
 

Table 4: Game implementation 

Component Tool Why is it chosen? 

Graphical engine  Ogre3D  Supports modern technologies, has extensible architecture, 
and is allowed for commercial usage. 

Scripting language  Lua  Handy syntax, easy integration process, fast interpreter  

Learning subject  C++ The .NET Framework built-in C++ 

Store course blocks  Encrypted zip archives  Open format  

Engine  C++ language  High performance, flexibility, open source libraries  
 

Games usually start from input by a player some information about himself. And as each programming language 
course begins from learning data types, we use the input process for learning basic data types.  A player fills in 
not only the information about himself, but he must also choose appropriate data type for each field from the 
given list (Figure 1).The list includes data types, their purpose and range description. After it he needs to create a 
class with these fields as class properties. For explaining a concept of object-oriented design the real game class 
hierarchy is used.   
 



No:12 – Human Aspects of Artificial Intelligence 
 

 

68 

  

  
Figure 1: Studying data types 

Next a player sees that his character can’t move. So he needs to teach him how to do it, i.e. to develop programs 
for his moving. He designs functions for moving forward, back, left and right step-by-step. In such a way a player 
learns functions. After he has coded a function he can see the result. If his code is correct, transformer can move 
to the corresponding direction. If not, transformer can’t move (Figures 2, 3).  
 

  

  
Figure 2: Studying functions 

After writing correct functions for moving a player can move along the table. Then he is asked to add the 
functions as class methods to a class Player. Thus while playing he elaborates new properties and methods 
(changing speed, jumping, attacking and so on), and in such a way he improves the character’s behavior.  
 



International Book Series "Information Science and Computing" 
 

 

69

  
Figure 3: Checking the result 

After some time of playing he needs to move down from the table, but he can’t do it using current shape, so 
needs to get a new shape – the Worm (Figure 4).  

  
Figure 4: Changing a shape 

 

  

  
Figure 5: Studying arrays 

 

For doing it he needs to learn a new data type – array (Figure 5).Further game situations need new shapes 
(Helicopter, Ball, Weight) and corresponding behavior for each shape. Thus the player step by step learns object-



No:12 – Human Aspects of Artificial Intelligence 
 

 

70 

oriented design and C++. At the end he creates a class diagram close to the reductive class diagram applied in 
the game. 
To develop learning games for other programming languages it is necessary to describe a learning course 
according to the course description rules. The concept and game engine can also be used for other IT games 
development. In this case the ways of solution check should be defined according to appropriate learning course 
and proper tools should be implemented. 

Conclusion 

We consider that using this approach allows gaining and improving knowledge and skills in computer science, 
and raising the motivation to study. 

Bibliography 

1. Computer Software Engineers [online] http://www.bls.gov (appeal date 02.03.2009) 
2. Madeline Alsmeyer, Judith Good, Katherine Howland, Graham McAllister, Pablo Romero and Phil Watten. Supporting 

the learning of programming in a social context with multi-player micro-games. Department of Informatics, University of 
Sussex. http://shareitproject.org/workshop/shareit.pdf  

3. Marc Prensky. Digital Game-Based Learning. Paragon House Publishers, 2004. 
4. Shabalina O.A. Models and Techniques for Knowledge Control in Adaptive Tutoring Systems, Unpublished Ph. D. 

Dissertation, Astrakhan University, Russia, 2005. 
5. Shabalina_et_al. Educational Games for Learning Programming Languages // Methodologies and Tools of the Modern 

(e-) Learning: suppl. to Int. Journal "Information Technologies and Knowledge". - 2008. - Vol. 2, [Int. Book Series "Inform. 
Science & Comput."; № 6]. - P. 79-83. 

Authors' Information 

Olga Shabalina – PhD, senior lecturer; CAD department, Volgograd State Technical University, Lenin av., 28, 
Volgograd, Russia; e-mail: O.A.Shabalina@gmail.com 
Pavel Vorobkalov – PhD, senior lecturer; CAD department, Volgograd State Technical University, Lenin av., 28, 
Volgograd, Russia; e-mail: pavor84@gmail.com 
Alexander Kataev – PhD student; CAD department, Volgograd State Technical University, Lenin av., 28, 
Volgograd, Russia; e-mail: kataevav@mail.ru 
Alexey Tarasenko – Second Higher Education student; CAD department, Volgograd State Technical University, 
Lenin av., 28, Volgograd, Russia; e-mail: volgatav@mail.ru 
 


