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MATRIX POWER S-BOX ANALYSIS1 

Kestutis Luksys, Petras Nefas 

Abstract: Construction of symmetric cipher S-box based on matrix power function and dependant on key is 
analyzed. The matrix consisting of plain data bit strings is combined with three round key matrices using 
arithmetical addition and exponent operations. The matrix power means the matrix powered by other matrix. This 
operation is linked with two sound one-way functions: the discrete logarithm problem and decomposition problem. 
The latter is used in the infinite non-commutative group based public key cryptosystems. The mathematical 
description of proposed S-box in its nature possesses a good “confusion and diffusion” properties and contains 
variables “of a complex type” as was formulated by Shannon. Core properties of matrix power operation are 
formulated and proven. Some preliminary cryptographic characteristics of constructed S-box are calculated.  
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Introduction 

As it is known, the design criteria for the block ciphers as for other cryptographic systems are related with the 
known cryptoanalytic attacks. It is essential that after the new attack invention the old design criteria must be 
changed. 
Traditional design criteria are oriented to the most powerful attacks such as linear and differential and were 
successfully satisfied for the several known ciphers, for example AES, Serpent, Camellia Misty/Kasumi etc. It was 
shown that the non-linearity properties of the inverse function in GF(2n) used as a single non-linear component in 
AES are close to optimality with respect to linear, differential and higher-order differential attacks [Canteaut and 
Videau, 2002]. 
But nevertheless it is shown that many known “optimal” ciphers have a very simple algebraic structure and are 
potentially vulnerable to the algebraic attack. This attack was declared in [Schaumuller-Bihl, 1983] and developed 
in [Courtois and Pieprzyk, 2002]. The vulnerability is related to S-box description by implicit input/output and key 
variables algebraic equations of polynomial type. For example the AES can be described by the system of 
multivariate quadratic equations in GF (28) for which the XL or XSL attack can be applied in principle. Then there 
is a principal opportunity to find the solution of these equations by some feasible algorithm that might be of sub-
exponential time and recover the key from a few plaintext/ciphertext pairs. 
The algebraic attack changes some old security postulates [Courtois, 2005]: 

1. The complexity is no longer condemned to grow exponentially with the number of rounds.  
2. The number of required plaintexts may be quite small (e.g. 1).  
3. The wide trail strategy should have no impact whatsoever for the complexity of the attack.  

Despite the fact that there are no practical results of breaking the entire AES by algebraic attack yet, it is sensible 
to build the new design methods possessing a higher resistance to algebraic attack. According to Courtois the 
design of ciphers will never be the same again and this is supported by the declared new ideas for the S-box 
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construction laying on the sufficiently large random S-boxes to prevent all algebraic attacks one can think 
[Courtois et al., 2005]. 
In this paper we further discus so called matrix power operation introduced in [Sakalauskas and Luksys, 2007] for 
a matrix power S-box construction. Matrix power S-box is based on modular exponentiation over GF(2n). This 
leads to some generalization of discrete logarithm problem (DLP) using a matrix group action problem over 
Galois field. 
The idea to use the group or semigroup action problem in vectorial spaces for the asymmetric cryptographic 
primitives’ construction can be found in [Monico, 2002]. We have generalized this approach and applied it to our 
S-box construction. As a result we have obtained some one way function (OWF) which is linked not only with a 
classical DLP but also with so called decomposition problem (DP), used in the asymmetric cryptosystems based 
on the hard problems in infinite non-commutative groups [Shpilrain and Ushakov, 2005]. The same kind of DP is 
used also in digital signature scheme and key agreement protocol construction [Sakalauskas, 2005] and 
[Sakalauskas et al., 2007].  

Preliminaries 

Let us define m x m matrices over GF(2n). The set of all those matrices over GF(2n) we denote as M. Plaintext 
and ciphertext data is represented in this set. We do not introduce any internal operations in the set M. For further 
considerations we are interested only in external operations performed in this set.  
Let MG be a group of m x m matrices over N2n–1 with the commonly defined matrix multiplication operation and 
matrix inverse. Keys’ matrices should be chosen from MG. 
Matrix group MG left and right action operations in the set M are denoted by  and  respectively.  
In a formal way  is a mapping : MG × M → M and : M × MG → M. Then ∀L, R ∈ MG and ∀X ∈ M there 
exist some Y, Z ∈ M such that L  X = Y and X  R = Z.  
The elements of matrices L, X, R, Y and Z we denote by the indexed set of its elements respectively, i.e. by {xij} 
we denote matrix X.  
We have chosen the following action operations which can be written for the matrix equation L  X = Y elements  
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and for the matrix equation X  R = Z elements  
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The multiplication and power operations are performed using GF (2n) arithmetic, i.e. modulo irreducible 
polynomial. 
Example 1. To give a simple example, let us assume that all matrices have two rows and two columns, i.e. m = 2.  
In this case, matrix Y can be expressed in the following way  
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Matrix Z can be expressed in the following way  
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Matrix power S-box 

The S-box input data we denote by m x m matrix D with elements being binary strings in vector space 1
2
−nF . 

Using the certain key expansion procedure we can generate the round keys for encryption: matrix K over 1
2
−nF  

and matrices L, R ∈ MG. Input/output and key matrices are all of the same m × m size.  
S-box transformations of input data D to ciphered output data C are performed as follows: 

D + K + 1 = X, (3) 
L  X  R = C, (4) 

where D + K + 1 denotes the ordinary arithmetical addition of matrices modulo 2n; 1 is the matrix consisting of 
arithmetical unity elements in nF2 . Combining (3) and (4) we obtain  

L  (D + K + 1)  R = C. (5) 
From (3) we obtain a matrix X ∈ M which does not contain zero elements, i.e. is without zero binary strings. This 
is necessary because of multiplications. If there would be at least one zero element, then ciphertext will be zero 
matrix. 
We can write now the implicit formula for an element cij:  
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where 1 is a bit string corresponding to arithmetical unit in nF2 .  

Since MG is a group of matrices, then there exists the inverse matrix R–1 such that RR–1 = R–1R = I, where I is the 
identity matrix. 
Decryption operation can be written similarly to (5): 

L–1  C  R–1 – K – 1 = D. (7) 
Resulting matrix of inverse S-box can be expressed like this: 

1
1 1

//
−−=∏∏

= =

⋅
ij

m

t

m

s

rl
stij kcd tlis , (8) 

where { /
ijl } = L–1 and { /

ijr } = R–1. Thus, we have to be able to calculate inverse matrices of L and R keys for 
decryption. Key matrix K remains the same, only during decryption ordinary subtraction is used instead of 
addition. 
For the validity of the last equations the left-right action operations must satisfy the following properties:  

1. The action operations must be associative, i.e.  
L2  (L1  X) = (L2L1)  X, (9a) 
(X  R1)  R2 = X  (R1R2). (9b) 
2. The action operations are both left and right invertible, i.e.  
L–1  (L  X) = (L–1L)  X = I  X = X, (10a) 
(X  R–1)  R = X  (R–1R) = X  I = X. (10b) 

Theorem 1. The action operations are associative.  
Proof. Let us consider encryption and decryption scheme with plaintext matrix X, key matrixes L and R, their 
inverse matrices L–1 and R–1 and cipher text matrix C. According to (4) and (7), following relations should be true: 

L  X  R = C, 
L–1  C  R–1 = X. 
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For the simplicity, we omit matrix K here and consider that matrix X has no zero elements. This does not affect 
generality because matrix K is added before matrix power operation and subtracted after, in case of inverse S-
box. 
Then plaintext matrix X can be expressed following way: 
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Thus we receive that 

( ) ( ) ( )1111 −−−− = RRXLLRRXLL . (11) 

We used ordinary features of power function and matrix multiplication, so this equation holds for any matrices. □ 
Lemma 1. Defined matrix power operation has the following property: if key matrices are identities, then resulting 
matrix of ciphertext is equal to the matrix of plaintext.  
Proof. Any element of ciphertext matrix can be written following way: 
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If key matrices are L = R = I, then we have that lii = rjj = 1 for any i and j from1 to m, and lij = rjj = 0, if i ≠ j: 
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Theorem 2. The action operations are both left and right invertible.  
Proof. According to (11) and Lemma 1 we obtain: 

( ) ( ) ( ) XXRRXLLRRXLL === −−−− II1111 . (12) □ 

Key matrices 

Key matrices L and R should be invertible in order that defined matrix power S-box would be bijective, i.e. would 
have inverse S-box. This is obvious from the (12). Decryption of the ciphertext can be done only with L–1 and R–1 
matrices. If L or R did not have inverse, then matrix power S-box is surjective and inverse S-box does not exist. 
Matrices L and R are chosen from group MG, therefore they have inverse matrices. The problem is, how to 
construct group MG that it would be large enough and brute force attacks would be useless. 
One of the methods is to use the certain non-commutative group representation in the set of matrix group GL(m, 
GF(2n)). The non-commutative group is presented by finite sets of generators and relations. Then it is required to 
construct representation matrices and their inverses for each initial group generator [Sakalauskas and Luksys, 
2007]. 
Other method is to generate random matrices and to check if they are invertible. We have used this method to 
evaluate key space and matrix power S-box security properties. 
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For the analysis, we have chosen 3 x 3 matrices (m = 3) and n = 7. In this case key matrices L and R are over 
N127 and data matrices are over GF(27). Irreducible polynomial was x7 + x + 1. 
Key matrices L and R have nine elements and each element can be randomly chosen from 127 values. Thus we 
can generate 1279 ≈ 262.9 distinct matrices. But that would be all possible variants, including those matrices, 
which do not have inverse. We have generated 234 matrices and 0.969% of those matrices were not invertible. 
Therefore rough estimate of matrix power key space would be around 263 (for two key matrices). 
 

Table 1. Cryptographic characteristics of 500 000 random invertible matrix power S-boxes 

Group 
No. Bijective Algebraic 

degree Nonlinearity k-
uniform 

Algebraic 
quadratic 
equations 
immunity 

Algebraic 
biaffine 

equations 
immunity 

Percentage, 
% 

1. T 4 56 2 219,53 - 10,9 
2. T 6 54 2 215,63 212,68 5,5 
3. T 5 44 4 219,53 219,65 3,5 
4. T 5 44 4 219,53 219,44 1,8 
5. T 5 44 4 219,53 219,23 0,2 
6. T 5 44 6 213,84 212 10,9 
7. T 4 56 2 210,75 219,65 3,5 
8. T 4 56 2 210,75 219,44 1,8 
9. T 4 56 2 210,75 219,23 0,2 
10. T 4 56 2 211,72 212 11,0 
11. T 3 56 2 219,53 2999 11,0 
12. T 3 44 4 219,53 219,65 3,6 
13. T 3 44 4 219,53 219,44 1,8 
14. T 3 44 4 219,53 219,23 0,2 
15. T 3 44 6 213,84 212 11,0 
16. T 2 56 2 210,75 219,65 3,5 
17. T 2 56 2 210,75 219,44 1,8 
18. T 2 56 2 210,75 219,23 0,2 
19. T 2 56 2 211,72 212 10,9 
20. T 1 0 128 27,814 26,34 5,5 
21. F 7 0 2 27,17 26,34 1,5 
22. F 7 0 2 27,135 26,294 0,1 

 
It is very difficult to evaluate cryptographic characteristics of S-box with 54 bit input and 63 bit output. Therefore 
we have made two simplifications for the security analysis. First of all we did not do key addition (3). If data matrix 
had zero element (-s) that matrix was left unchanged. This let us to analyze S-box with equal input and output 
size. For the second simplification, we fixed all input matrix elements except one and analyzed only one particular 
element of the output matrix. This led us to the analysis of the S-box with input and output size of 7 bits. 
We have chosen to evaluate five cryptographic characteristics: algebraic degree [Meier et al., 2004], nonlinearity, 
differential coefficient k-uniform, algebraic quadratic equations immunity and algebraic biaffine equations 
immunity [Courtois et al., 2005]. Algebraic immunity is calculated as follows: 
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where t is number of terms in algebraic normal form (ANF) of Boole function, n – number of variables, r – number 
of biaffine or quadratic equations. 
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We have generated 500 000 random invertible matrix power S-boxes. Analysis results are shown in Table 1. 
We have grouped all generated S-boxes into 22 groups according their characteristics. Two groups of S-boxes 
are not bijective, i.e. the representation of one element of input matrix into one output matrix element is not 
bijective, but the whole matrix power S-box remains invertible. Group 20th represents S-boxes which performs a 
linear transformation. Characteristics of groups 1–19 are similar to those of ordinary power functions, like Gold, 
Kasami, Niho etc. [Cheon and Lee, 2004]. 
These are just preliminary results and further analysis of matrix power S-box should be done.  

Conclusion 

In this paper we have analyzed key depended S-box based on introduced matrix power operation. We have 
formulated and proven core properties of this operation. 
Some preliminary cryptographic characteristics of constructed S-box are calculated. Characteristics of simplified 
version of matrix power S-box are similar to those of ordinary power functions, like Gold, Kasami, Niho etc. 
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