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Abstract: The key agreement protocol (KAP) is constructed using matrix power functions. These functions are 
based on matrix ring action on some matrix set. Matrix power functions have some indications as being a one-
way function since they are linked with certain generalized satisfiability problems which are potentially NP-
Complete. A working example of KAP with guaranteed brute force attack prevention is presented for certain 
algebraic structures. The main advantage of proposed KAP is considerable fast computations and avoidance of 
arithmetic operations with long integers. 
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Introduction 

After the sound Diffie-Hellman key agreement protocol (KAP) some attempts have been made to construct this 
protocol using hard problems in infinite non-commutative groups. The ideas were based on either conjugator 
search problems or decomposition problems (double co-set problems) which were reckoned as potentially hard 
problems for construction of one-way functions (OWF). One of the first ideas appeared in [Sidelnikov et. al., 
1993]. From this time main attempts were directed to the suitable platform group or semigroup selection. 
In 1999, first algorithms appeared using braid groups as a platform groups. In [Anshel et. al., 1999] the KAP was 
based on both simultaneous multiple conjugator search problem and so–called membership problem. Authors 
pointed out that the realization of proposed algorithm could be perspective using braid groups. In [Ko et. al., 1999] 
the multiple conjugator search problem in braid groups was used. 
But nevertheless, it was pointed out [Shpilrain and Ushakov, 2004], that using conjugator search problem in braid 
groups is unnecessary and insufficient condition for KAP security. Moreover, authors noticed that the main 
problem for construction of cryptographic primitives in infinite non-commutative groups is to reliably hide the 
factors in the group word. In some groups the hiding procedure can take almost the same resources as to reveal 
these factors. Hence, one of the directions of investigations in this field is to combine together at least two hard 
problems in infinite non-commutative groups [Shpilrain and Ushakov, 2005]. 
The papers presented above can be interpreted as an investigation direction based on hard problems in infinite 
non-commutative group presentation level, i.e. using the group combinatorial theory [Magnus et. al., 1966]. This 
approach is also named symbolic computation. 
The cryptographic application of group or semigroup action in finite dimensional vector spaces or, more generally, 
in some module is presented in [Monico, 2002]. This action is related with multidimensional generalization of 
classical modular exponent in cyclic group. This generalization pretends to be an OWF with higher complexity 
when compared with one based on classical exponent function in cyclic group related with discrete logarithm 
problem (DLP). 
The idea to use non-commutative infinite group (e.g. braid group) representation was also used for construction 
of the other kind of OWFs as a background of both digital signature scheme and key agreement protocol 
[Sakalauskas, 2005], [Sakalauskas et. al., 2005]. The (semi)group representation level allows us to hide the 
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factors in the publicly available group word in a very natural way. However, the original hard problems, such as 
conjugator search or decomposition problems in (semi)group presentation level are considerably weakened when 
they are transferred to the representation level. Therefore in this case these problems must be considerably 
strengthened by simultaneously adding other additional hard problems. 
The construction of KAP presented there is based on some matrix semiring R action on matrix set M. The set 
M is not specified as a closed set with respect to some internal operation. Both R and M are defined over two 
different algebraic structures. R is defined over some commutative semiring S and M over some finite 
semigroup T. The KAP is constructed using two external action operations of R on M. These operations are 
named matrix power functions and were used for matrix power S-box construction [Sakalauskas and Luksys, 
2007]. In some sense they are linked with well–known decomposition problem in infinite non-commutative 
(semi)groups [Shpilrain and Ushakov, 2005], but in contrary they are based on external action operation. The 
functions so defined have some indications as being one-way functions (OWF). 

Matrix power functions  

The classical definitions and notations in this section can be found in [Van der Waerden, 1967] and [Birkhoff and 
Bartee, 1974]. Let R be a matrix semiring consisting of m-dimensional square matrices with entries in some 
commutative semiring S, i.e. R is a matrix semiring over S. The elements of R we call a set of operators and 
denote them by X, Y, Z, and etc. The matrix edition and multiplication in R are defined in a convenient way, so 
since S is commutative, the matrix multiplication satisfies the associative law. We assume that these operators 
(matrices) are acting on some set of m-dimensional square matrices denoted by M over some finite semigroup 
T. Hence we defined some action of matrix ring R on a set of matrices in M. More precisely this action is the 
action of elements of R on elements of M in a particular way, i.e. for any X∈R there exists some action function 
fX: M→M. Then for all Q∈M and all X∈R there exist some A in M, such that fX(Q)=A. Hence we assumed 
that set M is closed under the action of R. According to classical definition, the action function corresponds to 
the left composition function fX( ) which arguments are in M. Then for any such function fX( ) the corresponding 
left action operation can be defined, which we denote by : R×M→M and 

fX(Q)=X Q=A (1) 
Alternatively, assume that for any left composition function fX( ) on M there exists right composition function ( )fX. 
Analogously to the action of left compositions functions we can define the corresponding right action operation 
which we denote by : M×R→M. Then for any Y∈R there exists some B∈M satisfying equation  

 (Q)fY=Q Y=B. (2) 
Definition 1. Functions fX( ), ( )fY and the corresponding action operations ,  are bi-associative, if  

(X Q) Y=X (Q Y). (3) 
Further action operations ,  we interpret as functions. These functions are defined in abstract algebraic 
structures. For KAP construction we present below a more concrete realization of these functions. 
Using matrix notation we write matrices as sets of their elements, i.e. X={xij}, Q={qjk}, Y={yki}, A={aik} and B={bji}. 
Since matrices are of the m-th order then the indexes are i,j,k∈{1…, m}. 
To define the left action function  of X on Q yielding the matrix A, we write the following formula relating the 
elements of these matrices 

∏
=

=
m

j

x
jkik
ijqa

1  
(4) 

Analogously, the result of right action operation  of matrix Y on Q is the matrix B which entries satisfies the 
following equations 
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These functions were introduced in [Sakalauskas and Luksys, 2007] for the matrix power S-box construction. 
To illustrate action of functions  and  let us assume that matrices A, B, X, Q and Y are of the 2-nd order, i.e. 
having two rows and two columns. Then m=2 and (4), (5) can be rewritten in the form 
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As we see functions  and  can be interpreted as left and right matrix power operations. Then using the 
analogy to the power (exponent) function defined in certain algebraic structures (say, in a ring of integers Zn) the 
action operations can be rewritten in the form reflecting the left and right matrix power operations  

X Q= XQ=A, (8) 
Q Y= QY=B. (9) 

Definition 2. Functions  and  we define as left and right matrix power functions, correspondingly.  
These functions are properly defined if powering operations of qjk by the elements of xij and yki have a sensible 
meaning. In the most simple (but practically significant) case the semiring S can be assumed as being a semiring 
of natural numbers N={1, 2, 3 …}, i.e. S= N. Then the variables xij and yki are natural numbers and the elements 
of matrices A and B denoted by {aik} and {bik} in (4) and (5) can be calculated by powering the elements qjk in 
finite semigroup T by natural numbers xik and yik using the multiplication operation defined in T.  
The following theorem can be formulated for functions  and .  
Theorem 1. If Z=XY, where X, Y and Z are in M, then  

Z Q=(XY) Q=X (Y Q)=X Y Q. (10) 
Q Z=Q (XY)=Q ( X Y)=Q  X Y. (11) 

▼ Proof.  The proof directly follows from the (4), (5) and the rule of convenient matrix multiplication in R. ▲ 
Theorem 2. . If S=N, then functions  and  are bi-associative. 
▼ Proof.  Since the elements of matrices X and Y are the natural numbers in N, then for all qi∈T and xi,yk∈N, 

the following exponentiation rules in T are valid ( ) ( ) ikkiikki xy
j
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Using association law of matrix multiplication in R and (4), (5), and applying direct calculations we find that 
(X Q) Y=X (Q Y)=D, where D={dij} is the matrix in M. ▲ 

Key agreement protocol 

Using a combination of functions  and   we construct the key agreement protocol (KAP). It is based on the 
conjecture that these functions are one-way functions (OWFs). Let us define two subsets of commuting matrices 
RL and RR in R. This means that for all X,U∈RL and Y,V∈ RR  

XU=UX, (12) 
YV=VY. (13) 

Then we propose the following KAP. 
1. Parties agree on publicly available matrix Q in M and two subsets RL and RR in R. 
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Alice chooses at random the secret matrix X in RL and Y in RR, respectively, calculates matrix A and sends it to 
Bob, where 

A=X Q Y. (14) 
2. Bob chooses at random the secret matrix U in RL and V in RR respectively, calculates matrix B and sends it to 
Alice, where 

B=U Q V. (15) 
3. Both parties compute the following common secret key K: 

K=X B Y= X U Q V Y=U X Q Y V=U A V. (16) 
The last identities are valid since Theorems 1, 2 and equations (12), (13) hold.  
The proposed KAP is some generalization of well known Diffie-Hellman protocol. Indeed, if all matrices are 
numbers in Galois field GF(p) then according to (4), (5), and (16) we can write  

X Q Z= XQY=QXY=K, (17) 
where K is a Diffie-Hellman secret key. 
To compromise the secret key K one must find any matrices X, Y in (14) and U, V in (15) for given instances Q, A 
and Q, B correspondingly. Let us consider the case to find any matrices X, Y in (14). Let the elements of X, Y, Q 
and A are {xij}, {yij}, {qjk} and {aik} correspondingly. For more clarity the matrix equation (14) we write in a form of 
the system of equations for the matrices of 2-nd order, i.e. for m=2: 
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(18) 

At the first sight it seems that the problem to find any X={xij}, Y={yij} is some matrix generalization of discrete 
logarithm problem (DLP). But nevertheless the solution of DLP is not a sufficient condition to find X and Y even in 
the case when T is a group of Galois field GF(p). If we choose some matrix Y in RR and will try to find X by 
solving (14), there is no guarantee that obtained matrix X will be in RL. Hence the compromising of K is related 
with the solution of matrix equation (15). This equation for m=2 is presented in (18). 
Without proof we declare that the security of proposed KAP relies on the complexity of certain generalized 
satisfiability problem which conveniently is denoted by SAT(S), [Shaefer, 1978]. According to Shaefer Dichotomy 
theorem the SAT(S) problem is either P or NP-Complete, [Garey and Johnson, 1979]. The first alternative is 
rather a very rare exception since the conditions of SAT(S) problem to be in class P occurs in a very special 
predetermined cases, [Shaefer, 1978]. Hence the key K compromisation with a very big certainty corresponds to 
the solution of NP-Complete problem. 
In contrary to the classical Diffie-Hellman protocol, we think that one of advantages of there proposed protocol is 
the avoidance of performing arithmetic operations with big integers and faster computations. 

Implementation 

The concrete realization of KAP requires defining both the matrix semiring R over commutative semiring S and 
the set of matrices M over the semigroup T. As it was denoted above, we can choose S=N, when T was 
assumed to be finite semigroup. The most known types of T can be either a semigroup *

nZ  of ring of integers Zn, 
or the group F* of some Galois (finite) field F, or a group of Elliptic Curve points in some finite field F. 
In any case when T is a semigroup neither matrix multiplication nor addition are defined in M. Hence we have 
specified M as a set without any internal operations.  As an example we can choose T=GF(251). 
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We think that essential security parameters in our construction are the order of matrices m and the logarithm of 
cardinality of T, which we denote by N=⎡log2n⎤. When T=GF(251), N=⎡log2n⎤=⎡log2251⎤=8. Let the other 
security parameter m=32. Then we have the matrix Q in M of order 32 with elements in GF(251). In this case the 
matrices X and Y are represented by k =mxmxN=32x32x8=8192 bits. 
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