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MINIMIZATION OF REACTIVE PROBABILISTIC AUTOMATA 

Olga Siedlecka 

Abstract: The problem of finite automata minimization is important for software and hardware designing. Different 
types of automata are used for modeling systems or machines with finite number of states. The limitation of 
number of states gives savings in resources and time. In this article we show specific type of probabilistic 
automata: the reactive probabilistic finite automata with accepting states (in brief the reactive probabilistic 
automata), and definitions of languages accepted by it. We present definition of bisimulation relation for 
automata's states and define relation of indistinguishableness of automata states, on base of which we could 
effectuate automata minimization. Next we present detailed algorithm reactive probabilistic automata’s 
minimization with determination of its complexity and analyse example solved with help of this algorithm. 
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Introduction 

The problem of finite automata minimization appeared in the end of fifties of last century and its main point is to 
find automata with the minimum number of states accepting the same language as input automata. During last 
fifty years many algorithms for minimization of finite deterministic automata came into existence, most of which 
(except Brzozowsky algorithm which is based on derivatives [Brzozowski, 1962]), is based on equivalence of 
states. One of the most popular minimization algorithms is Hopcroft and Ullman's algorithm with running time 
O(|Σ|n2) (where |Σ| is the number of symbols in the alphabet, n is the number of states) [Hopcroft, 2000].  Another 
algorithm with the same time complexity, but better memory complexity (O(|Σ|n)) is Aho-Sethi-Ullman's algorithm 
[Aho, 2006]. The most efficient deterministic finite automata minimization algorithm is Hopcroft's algorithm 
[Hopcroft, 1971] with time complexity O(|Σ|nlogn). 
In the same period of time scientists were searching for another models of computation. They developed 
probabilistic automata [Rabin, 1963], which are extensions of Markov chains with read symbols [Sokolova, 2004], 
models of finite automata over infinite words [Thomas, 1990], timed automata [Alur, 1994], hybrid automata 
[Henzinger, 1998] etc. We can find their ontological review in article: [Kryvyi, 2007]. It became important to find 
minimization algorithms for new types of automata. So far minimization of reactive probabilistic automata hasn't 
been described. 

Probabilistic automata 

It exists many types of probabilistic automata which differs with properties, applications or probability distributions 
(continuous or discrete). Their review we can find in article [Sokolova, 2004]. Hereunder we itemize few of 
probabilistic automata's types with discrete probability distribution: the reactive automata, the generative 
automata, the I\O automata, the Vardi automata, the alternating model of Hansson, the Segala automata, the 
bundle probabilistic automata, the Pnueli-Zuck automata and others. 
The algorithm showed in article was formulated for the reactive probabilistic automata.  
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A reactive probabilistic automata is a triple PA=(Q, Σ, δ), where Q is the finite set of states, Σ is the finite set of 
input symbols (an alphabet), δ is the transition probability function given by δ:Q×Σ→D(Q) (where D(Q) is the set 
of all discrete probability distribution on the set Q) [Sokolova, 2004] . 
An initial reactive probabilistic automata with accepting states is a five PA=(Q, Σ, δ, q0, F), in which we have 
additionally two elements: q0 - a member of Q, is the start state, F⊂ Q is the set of final (accepting) states. 
After reading given symbol automata is in state of superposition of 
states: p0q0+p1q1+...+pnqn, where p0+p1+...+pn=1. Henceforth we will 
use shorter name of probabilistic automata within the meaning of initial 
reactive probabilistic automata with accepting states. An example of 
this type of automata we show on figure 1. 
The probability of going from state q1 to state q2 after reading symbol σ 
we denote as δ(q1,σ)(q2)=p. An extended transition probability function, 
denoted by the same notation δ  is given by: 

 q1, w
q Q

q1, w q q,  [Cao, 2006]. 

The language accepted by the probabilistic automata is defined as 
function LPA:Σ*→[0,1], such that: 

∑
∈

=Σ∈∀
Fq

PA wwqwLw ))(,()(, 0
* δ   [Cao, 2006]. 

We say that language L is recognized with bounded error by an 
automata PA with interval (p1,p1), if p1<p2 and p1=sup{Pw|w∉L}, p1=inf{Pw|w∈L}   [Golovkins, 2002]. 
We say that language L is recognized with probability p, if the language is recognized with interval (1-p,p)  
[Golovkins, 2002]. 
We say that language L is recognized with probability 1-ε, if for every ε>0 there exist an automata which 
recognizes the language with interval (ε1,1-ε2), where ε1,ε2≤ε [Golovkins, 2002]. 

Bisimulation and indistinguishableness 

Let R be an equivalence relation on the set S, and let P1,P2∈D(S) 
be discrete probability distributions. Then 
P1≡RP2⇔∀C∈S/R:P1[C]=P2[C], where C is an equivalence class 
[Sokolova, 2004]. 
Let R be an equivalence relation on the set S, let A be a set, and 
P1,P2∈D(S) be discrete probability distributions.  Then: 

P1≡R,AP2 ⇔ ∀C∈S/R, ∀a∈A: P1[a,C]=P2[a,C]  [Sokolova, 2004].  
Let PA1=(S, Σ, δ) and PA2=(T, Σ, δ) be two reactive probabilistic 
automatas. A bisimulation relation R⊆S×T exists if for all (s,t)∈R 
and for all σ∈Σ: 

- if δ(s,σ)=P1  then there exists a distribution P2 with t∈T 
such that δ(t,σ)=P2 and P1≡R,ΣP2          [Sokolova, 2004]. 

States (s,t)∈R we call bisimilar, what is denoted by s≈t. 
Let PA1=(S, Σ, δ, q0, FS) and PA2=(T, Σ, δ, q0, FT) be two initial 
reactive probabilistic automata with accepting states. We can define indistinguishableness relation N⊆S×T, if for 
all (s,t)∈N and for all σ∈Σ:  

- (s,t)∈N0  if and only if ((s∈FS∧t∈FT)∨(s∉ FS ∧t∉ FT)), 

 

 
Fig.1. The initial reactive probabilistic automata  

with accepting states 

 

 

 
Fig.2. The bisimulation relation on PA 

 



International Book Series "Information Science and Computing" 
 

 

 

77

-  (s,t)∈Nk  if and only if (s,t)∈Nk-1 and 
- if δ(s,σ)=P1   then exists the probability distribution 

P2 with t∈T such that δ(t,σ)=P2 and P1≡R,ΣP2. 
For n=|Q|, we have N⊆Nn-2⊆Nn-3⊆...⊆N1⊆N0. States s,t we call 
indistinguishable, what is denoted by s≡t, if there exists 
indistinguishableness relation N, such that (s,t)∈N. 

Minimization of reactive probabilistic automata 

A probabilistic automata PA=(Q, Σ, δ, q0, F) recognizing language 
L with probability p we call minimal, if there doesn't exist automata 
with smaller number of states recognizing language L with not 
smaller probability. 
A minimization of probabilistic automata parts on two steps:  

- elimination of unreachable states (probability to reach 
those states is 0), 

- joining of indistinguishable states  (using indistinguishableness relation). 
First we show on below code elimination of unreachable states: 
 

Alg.1. Algorithm of elimination of unreachable states: 
 

INPUT: PA=(Q,Σ,δ,q0,F)- reactive probabilistic automata. 
OUTPUT: PA’=(Q’,Σ,δ’,q0,F’) - reactive probabilistic automata without unreachable 
states, recognizing the same language as PA. 
1.    FOR ALL {q∈Q} DO 
2.      markedStates[q]←0; 
3.    END FOR 
4.      S.push(q0); markedStates[q]←1; pr←0; 
5.    WHILE {S≠∅} DO 
6.      p←S.first(); 
7.      S.pop(); 
8.      FOR ALL {σ∈Σ} DO 
9.        FOR ALL {q∈Q} DO 
10.         pr←δ(p,σ)(q); 
11.         IF {pr≠0 ∧ markedStates[q0]=0} THEN 
12.           S.push(q); 
13.           markedStates[q]←1; 
14.         END IF 
15.       END FOR 
16.     END FOR 
17.   END WHILE 
18.   FOR ALL {q∈Q} DO 
19.     IF {markedStates[q]=1} THEN 
20.       Q’.push(q); 
21.     END IF 
22.   END FOR 
23.   F’←F∩Q; 
24.   FOR ALL {q∈Q} DO 
25.     IF {markedStates[q]=1} THEN 
26.       FOR ALL {p∈Q} DO 
27.         IF {markedStates[p]=1} THEN 
28.           FOR ALL {σ∈Σ} DO 
29.             δ’(q,σ)(p)←δ(q,σ)(p); 
30.           END FOR 
31.         END IF 
32.       END FOR 
33.     END IF 
34.   END FOR 

 

 
Fig.3. The indistinguishableness relation on PA 

 



Algorithmic and Mathematical Foundations of the Artificial Intelligence 
 

 

 

78 

 

In this algorithm S is auxiliary stack, on which we put states, which we can reach with non-zero probability going 
out from the start state q0. The transition probability function δ(p,σ)(q) gives probability pr of reaching state q, 
going out from state p, reading symbol σ. The running time of the algorithm time is bounded by: 

T(n,|Σ|) ≤ a(7+9n+2|Σ|n+2n2+6|Σ|n2)+c(4+8n+2|Σ|n +3n2 +5|Σ|n2) , 
where a is time of an assignment and c is time of comparison, clearly O(|Σ|n2) is the time complexity of this 
algorithm. 
In the algorithm of joining indistinguishable states we use already defined indistinguishableness relation. In one 
word, states to be indistinguishable, have to be in the same equivalence class, and must have the same 
probability distribution for symbols and equivalence classes, which can be reach from this states. Inspired by 
Hopcroft-Ullman's algorithm [Hopcroft, 2000], first we assume that all pairs of states are indistinguishable, above 
that, that first element of pair is member of final states' set and second isn't. Next analysing all pair of states and 
all symbols we find distinguishable states, until the moment that any change is made. Algorithm analyses 
probability distributions of reaching state from state.  
 

Alg.2. Algorithm of joining indistinguishable states: 
 

INPUT: PA=(Q,Σ,δ,q0,F) - reactive probabilistic automata. 
OUTPUT: PA’=(Q’,Σ,δ’,q0’,F’) - minimal reactive probabilistic automata recognizing 
language LPA.      
1.    FOR {i←0; i<|Q|; i←i+1} DO 
2.      FOR {j←0; j≤i; j←j+1} DO 
3.        IF {(qi∈F ∧ qj∉F) ∨ (qi∉F ∧ qj∈F)} THEN 
4.          Dqi,qj←1; 
5.        ELSE 
6.          Dqi,qj←0;  
7.        END IF 
8.      END FOR  
9.    END FOR 
10.   FOR {i←1; i<|Q|; i←i+1} DO 
11.     FOR {j←0; j<i; j←j+1} DO 
12.       IF {Dqi,qj=0} THEN 
13.         FOR ALL {σ∈Σ} DO 
14.           E1←0, E2←0, N1←0, N2←0; 
15.           FOR ALL {p∈Q} DO 
16.             IF {Dqi,p=0} THEN 
17.               E1←E1+δ(qi,σ)(p); 
18.             ELSE 
19.               N1←N1+δ(qi,σ)(p); 
20.             END IF 
21.             IF {Dqj,p=0} THEN 
22.               E2←E2+δ(qj,σ)(p); 
23.             ELSE 
24.               N2←N2+δ(qj,σ)(p); 
25.             END IF 
26.           END FOR 
27.           IF {E1≠E2 ∨ N1≠N2} THEN 
28.             Dqi,qj←1; break; 
29.           END IF 
30.         END FOR 
31.       END IF 
32.     END FOR  
33.   END FOR 
34.   Q’←Q, F’←F, q0’←q0; 
35.   FOR {i←1; i<|Q|; i←i+1} DO 
36.     FOR {j←0; j<i; j←j+1} DO 
37.       IF {Dqi,qj=0} THEN 
38.         Q’←Q’\{qi,qj}, Q’←Q’∪{qij}; 
39.         IF{qi∈F} THEN 
40.           F’←F’\{qi,qj}, F’←F’∪{qij}; 
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41.         END IF 
42.         IF {j=0} THEN 
43.           q0←qj; 
44.         END IF 
45.       END IF 
46.     END FOR  
47.   END FOR 
48.   FOR ALL {q1×q2×σ ∈ Q’×Q’×Σ} DO 
49.     IF {q1∉Q ∧ q1=p1p2 : p1p2∈Q} THEN  
50.       δ’(q1,σ)(q2)← δ(p1,σ)(q2); 
51.     ELSIF {q2∉Q ∧ q2=p1p2 : p1p2∈Q } THEN 
52.       δ’(q1,σ)(q2)← δ(q1,σ)(p1)+δ(q2,σ)(p2); 
53.     ELSE  
54.       δ’(q1,σ)(q2)← δ(q1,σ)(q2); 
55.     END IF 
56.   END FOR 

 

Analyzing algorithm in details: on input we have reactive probabilistic automata; on output we get minimal 
automata that accept the same language as input automata. In lines 1 to 9 we tentatively fill structure D, which is 
lower triangular matrix of all combination of automata's states. In place where one of the states is final and 
second isn't, we set value 1, because states are distinguishable. In other case we set 0, providing that all other 
pairs of states are indistinguishable.  In lines 10 to 33 is the main part of algorithm, which decides if states are 
equal or not, comparing probability distributions. First (line 12) we verify if pair of states is indistinguishable 
Dqi,qj=0 (otherwise it makes no sense in analyzing them). For every symbol from alphabet Σ we reset value of 
auxiliary variables E1, E2, N1, N2, in which we will sum probabilities of reaching distinguishable states N or 
indistinguishable states E. States will be generally recognized as indistinguishable if values of E1, E2 and N1, N2 
will be respectively equal. If for two analyzed states, for any symbol of alphabet, we get different values of those 
variable, loop is interrupted (line 28), because states are distinguishable and we go to next iteration. In the last 
part of algorithm (from line 34) we create output automata, so we replace indistinguishable states by single 
states, and calculate values for transition probability function (from line 48). Depending, if we analyze reaching 
state or going out from new state, values of probability will be summed or copied. The running time of the 
algorithm is bounded by: 

T(n,|Σ|) ≤ a(5 + 4.5n - 3.5|Σ|n + 7.5n2 + 2|Σ|n2+ 3n3 + 1.5|Σ|n3)+ 
c(2 + 7n - 2.5|Σ| n + 7n2 + |Σ| n2 + 7n3 + 1.5|Σ|n3), 

so complexity will be O(|Σ|n3). 
Lets analyze steps of both algorithms on 
example from figure 1. First we reset table 
markedStates[qi], which size is 7 (automata 
has 7 states). We push on stack start state. 
Next we mark with 1 field for this state in 
table markedStates[q0]. We pop from the 
stack start state and push those, which we 
can reach from start state reading symbol 0, 
with nonzero probability (those will be q1, q2) 
and for symbol 1, respectively q3, q4, in every 
case marking them with 1 in table 
markedStates[qi]. In next iteration we search 
for states we can reach from states put on 
the stack.  Finally, the only state, which 
wasn't marked is q6. In next steps we exclude it from the set of states of automata.  
The algorithm of joining indistinguishable states in first part fill structure Dqi,qj with 1 in those places where one of 
states is final, and second isn't – for all combinations of other states with state q5. Next we check successively all 

 

 
Fig.4. a) Elimination of unreachable states b) Joining of indistinguishable states 
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combinations of states and sum probabilities of going out from this states in variables E1, E2, N1, N2, for 
example for states q1, q0, values for this variables are E1=0, E2=1, N1=0, N2=0, so this pair of states is 
distinguishable and Dqi,qj=1. Finally structure Dqi,qj has value 1 only for pairs: q1, q2 and q3, q4, which will be 
replaced by new single states q12, q34. Probabilities for reaching those states will be summed, and for going out 
from them will be copied. 

Conclusion 

In article we define indistinguishableness relation for reactive probabilistic automata, what give us opportunity to 
build minimization algorithm, with complexity O(|Σ|n3). Algorithms will terminate, because number of states or 
symbols in alphabet is always limitation for iterations (and we work on finite sets). The probability for accepting 
words doesn’t change because it is respectively summed or copied. 
The definition of indistinguishableness relation and minimization algorithm is the base for further work on 
adequate algorithm for quantum automata. 
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